The Complete Mitochondrial Genome and Song Evolution of the Monotypic Genus U. Tarbinsky, 1932 (Orthoptera: Tettigoniidae)

Publication Type:Journal Article
Year of Publication:2016
Authors:Wang, Zhao, Zhang, Ren
Journal:Environmental Entomology
Volume:45
Questão:3
Pagination:737 - 746
Date Published:Oct-19-20162019
ISSN:0046-225X
Palavras-chave:adaptive evolution, insect songs, mitogenome, Orthoptera
Abstract:

The insect Uvarovites inflatus Uvarov is highly appreciated in China. It is known for its distinctive songs and horn-like forewings and is raised commercially for insect lovers. U. inflatus was previously categorized as part of the mono- typic genus Uvarovites; however, there was little molecular evidence to support this taxonomic classification. This study obtained and investigated the mitogenome of U. inflatus, and its songs were characterized and compared with other Ensifera species whose mitogenomes are available. By performing the mitochondrial analysis, we were able to assess the phylogenetic relationships between these species and discuss the evolution of Ensifera calling songs. The mitogenome of U. inflatus is 15,956bp in length and contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region. The organization and orientation of the U. inflatus mitogenome are similar to those of other Tettigonioidea species. Phylogenetic analysis based on 13 protein-coding genes showed that the superfamily Tettigonioidea is monophyletic, as are the other six tested subfamilies from Tettigonioidea. Our results also indicated that Grylloidea is monophyletic. A Bayesian relaxed clock analysis showed that the differentiation of U. inflatus and Gampsocleis gratiosa Brunner occurred in the middle Miocene, suggesting that their speciation occurred over a long evolutionary period. The results provide significant support for the establishment of the monotypic genus Uvarovites. Calling song analysis showed that at least two discrete steps of independent evolution occurred during the change from pure tone to broadband noise, and that the ancestor of existing Ensifera was more likely to have emitted pure-tone songs than broadband signals. Together, the mitogenome, molecular clock, and acoustic data allowed us to clarify the taxonomic state of U. inflatus and propose a timeline for the evolution of Ensifera songs.

URL:https://academic.oup.com/ee/article-lookup/doi/10.1093/ee/nvw031
DOI:10.1093/ee/nvw031
Short Title:Environ Entomol
BioAcoustica ID: 
Non biological: 
Taxonomic name: 
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith