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Grouper, a family of marine fishes, produce distinct vocalizations associated with their reproductive

behavior during spawning aggregation. These low frequencies sounds (50–350 Hz) consist of a series

of pulses repeated at a variable rate. In this paper, an approach is presented for automatic classifica-

tion of grouper vocalizations from ambient sounds recorded in situ with fixed hydrophones based on

weighted features and sparse classifier. Group sounds were labeled initially by humans for training

and testing various feature extraction and classification methods. In the feature extraction phase,

four types of features were used to extract features of sounds produced by groupers. Once the sound

features were extracted, three types of representative classifiers were applied to categorize the spe-

cies that produced these sounds. Experimental results showed that the overall percentage of identifi-

cation using the best combination of the selected feature extractor weighted mel frequency cepstral

coefficients and sparse classifier achieved 82.7% accuracy. The proposed algorithm has been imple-

mented in an autonomous platform (wave glider) for real-time detection and classification of group

vocalizations. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5022281

[JFL] Pages: 666–676

I. INTRODUCTION

Mature adults of many fish species swim long distances

and gather in high densities for mass spawning at precise

locations and times.1 This widespread reproductive strategy

is typically shared among the groupers, which are both keys

to the trophic balance of marine ecosystems and targeted by

humans. Worldwide depletion of large predatory fishes has

already caused top-down changes in coral reef ecosystems

and biodiversity loss.2,3 Moreover, most known fish spawn-

ing aggregations (FSAs) sites are shared by many species at

different times4 and as such, represent breeding hotspots. It is

critical that their role in the persistence of marine populations

be elucidated. FSAs share common features such as large

body-sized individuals, strong site fidelity, and geomorpho-

logical attributes, (i.e., shelf-break, capes).5,6 Once located,

they are easily over-exploited and depleted7,8 ICRS 2004.

Despite numerous historical records of Caribbean-wide

FSAs9–23 only a few are viable to date and many remain

unprotected.

These FSAs in the Caribbean Sea, Gulf of Mexico, and

the Bahamas Region (i.e., the intra-America seas) are where a

number of vocalizing grouper species such as the Nassau

(Epinephelus striatus), yellowfin (Mycteroperca venenosa), red

hind (Epinephelus guttatus), and black grouper (Mycteroperca
bonaci), among others, aggregate to spawn. Most of these spe-

cies spawn during the winter and spring months in the northern

hemisphere. The timing of spawning is usually cued to the

moon and daylight, but also to water temperatures and the local

current conditions. Because FSAs often occur at remote loca-

tions, at dusk, and are in water depths between 30 and 80 m,

near the shelf break, spawning activities and fish population

are challenging to observe, and thus to monitor.

Studies have shown that more than 800 fish species can

produce sounds for diverse purposes.24,25 Most of the sounds

are emitted at low frequencies,26 usually below 1000 Hz.

However, some pulses can reach 8 kHz27,28 or present more

complex characteristics.29 In addition, these emissions are

typically broadband short-duration signals (see Fig. 1). Fish

generate sounds through several mechanisms, which depend

on the species and a variety of circumstances, such as court-

ship, threats or defending territory.30 Passive acoustics sensors

can record species-specific acoustic signals associated with

fish behaviors. The analysis of recordings of the sonorous spe-

cies at FSAs has recently become a new approach in addition

to underwater visual observations to monitor fish activity,

such as courtship behavior, presence, and residence time. This

approach is also used to scout the shelf edge where FSAs are

likely to exist, which could reveal unknown aggregation sites

or the recovery of overfished FSAs along with the species that

visit the FSA.31 Passive acoustic recordings are usually con-

ducted at fixed stations with long-term acoustic recorder that

can last several months underwater. Large volumes of acous-

tic data are usually generated and are manually classified

using sounds spectrograms for visual identification and audi-

tory classification, which can be tedious, time consuming, and

prone to errors.a)Electronic mail: aibrahim2014@fau.edu
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Few automatic identification methods exist, which

mostly focused on sounds of higher frequency than those of

fish vocalizations. Chesmore and Ohya32 proposed an identifi-

cation scheme for Orthoptera species using temporal features

based on the shape of waveform and duration between con-

secutive zero-crossings followed by a multilayer perceptron

(MLP) classifier. In Ibrahim et al.,33 a hybrid features extrac-

tion using discrete wavelet transform and mel frequency ceps-

tral coefficients (MFCC) is proposed for detection North

Atlantic Right Whales. In Mellinger et al.,34 a complex detec-

tion method is presented for humpback whales by frequency

contour tracing and by multiple parameter optimization. An

unsupervised classification method for bird song syllables has

been proposed by Hansson-Sandsten,35 based on singular vec-

tors of multitaper spectrogram and the similarity measures of

two syllables using pairs of singular vectors. And finally, the

study by Starkhammar and Hansson-Sandsten35 presents an

evaluation of different time-frequency representations for tar-

get detection applied to broadband echolocation signals of

dolphins.

Fish sound production, including that of groupers, has

long been known.36 Some fish sounds are species-specific in

frequency and pulse rate, which allows their presence to be

detected from acoustic recordings.36–39 Sattar et al.40,41 pro-

posed an automated approach to quantify and identify the

sound of the plainfin midshipman (Porichthys notatus), a high

vocal species of toadfish found in the northeast Pacific Ocean.

The frequency range for this species is within 100 Hz, which

is also close to the lower end of the frequency range for the

grouper species targeted in this work. Sattar et al.40 proposed

an automated identification scheme for fish vocalizations

based on the auditory analysis for feature extraction followed

by a machine-learning algorithm for classification. The audi-

tory analysis uses amplitude modulation spectrogram (AMS).

The information containing amplitude modulations of the

input signal is analyzed and represented in two-dimensional

AMS from which the high-resolution features are extracted.

A support vector machine (SVM) classifier is then trained

on a large number of pre-selected AMS patterns, which clas-

sifies the input signal. They also evaluated the AMS feature

extraction against the MFCC method, which had a lower

accuracy that than the AMS method at detecting the growls

and grunts made by P. notatus. In Sattar et al.,41 the authors

evaluated the performance of the multiresolution acoustic fea-

tures (MRAF) extraction method and robust principal compo-

nent analysis (RPCA) based feature selection to identify

grunts, growls and groans from P. notatus. RPCA identifies a

low rank representation, random noise, and a set of outliers

by repeatedly calculating the singular value decomposition

(SVD) and applying “thresholds” to the singular values and

error for each iteration.42,43 The RPCA plays a significant

role in tackling the key challenges involved with big data44

by minimizing false alarms, reducing seasonal variability

and processing the data that are not normally distributed.

Their classification accuracy showed improvement over the

MFCC feature extraction method and an increased capacity

at distinguishing between features because of RPCA robust-

ness to overlapping low-frequency spectral contents among

different classes. Noda et al.45 were able to successfully clas-

sify 102 different fishes species using linear frequency ceps-

tral coefficients (FCC) and MFCC, Shannon entropy and

syllable length features extraction methods. For the classifica-

tion, they used three widely used machine-learning algo-

rithms: K-nearest neighbors (KNN), random forest (RF), and

support vector machine (SVM). Their experimental results

show an average classification accuracy of 95.24%, 93.56%,

and 95.58%, respectively. All these methods have the advan-

tage of being automated, and computationally cost efficient.

They can be implemented on a small electronic chip, which

can be installed on portable and autonomous devices for real-

time detection.

FIG. 1. (Color online) (a) Red hind (E. guttatus) sound spectrogram;

(b) Nassau grouper (E. striatus) sound spectrogram; (c) Yellowfin (M.
Venenosa) tonal sound spectrogram; (d) Yellowfin (M. venenosa) pulse train

spectrogram; (e) Black grouper sound spectrogram.
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In this study, we propose to use a similar features

extraction methods and machine learning classifiers associa-

tion to identify four species of grouper that co-occur at

spawning aggregation sites in the US Caribbean and whose

courtship associated sound (CAS) have been described

(Table I). The species-specific vocalizations are distinctive

in duration, peak frequency, and tonal characteristics and are

easily distinguished from each other audibly and visually in

spectrograms. Figure 1 shows the spectrogram of the four

species targeted in this study. Red hind (E. guttatus), whose

vocalizations are within the 100–200 Hz band36 and consist

of a variable number of pulses, with one or more portion of

the call being tonal, at a higher pulse rate than the rest of the

pulses [Fig. 1(a)]: Nassau grouper (E. striatus), whose vocal-

izations consist of a pulse train made up of a varying number

of short individual pulses and tonal sound in the 30–300 Hz

band37 [Fig. 1(b)]; Yellowfin grouper (M. venenosa), whose

vocalizations consist of the same types of calls as the Nassau

grouper, although longer in duration, with frequency ranging

between 90 and 150 Hz38 [Figs. 1(c) and 1(d)]; Black grou-

per (M. bonaci), which produce at least two variations of a

low frequency, modulated tonal call, which ranges between

60 and 120 Hz, but generally has a longer duration than

E. striatus.39

The features extraction methods used in this study are

MFCC and MRAF. The MFCCs are short-term spectral

based features, which despite being a powerful representa-

tion do not work well under noisy condition due to its mis-

match problem. In this study, an optimized version of MFCC

that consists of the application of weighting dynamic fea-

tures was used along with a more robust feature, weighted

MRAF (WMRAF) to classify the CAS of the four grouper

species.

The paper is organized as follows. In Sec. II, we describe

the measurements, their location, and recording characteris-

tics. We also provide the human ear detection method used to

validate the electronic classification method. In Sec. III we

describe the two proposed types of features extraction using

WMFCC and WMRAF. In Sec. IV, we describe the classifi-

cation method. Experimental results with combinations of

feature extraction and classification are discussed in Sec. V,

and concluding remarks are given in Sec. VI.

II. DATASETS

The proposed system for classification of grouper CAS

was tested on three datasets, collected at different spawning

aggregation sites. The first dataset was recorded on the west

coast of Puerto Rico at Abrir La Sierra (ALS),37 a site known

to have a spawning aggregation of red hind at a depth of

25 m.36 The second dataset was collected at Bajo de Sico

(BDS) Bank, which is a submerged seamount approximately

27 km west of Puerto Rico, surrounded by depths of over

250 m to the southeast near the Puerto Rico insular shelf and

over 1000 m to the north. Currently, there is a six-month sea-

sonal closure to reef fish fishing from October to March of

each year.20 Nassau grouper have been reported at BDS dur-

ing the non-spawning time, and more recently a spawning

aggregation of approximately 100 individuals has been docu-

mented.37 The third dataset was collected at Mona Island,

located offshore, 72 km west of Puerto Rico,38 within the no-

take marine reserve. At this site Yellowfin grouper spawning

aggregation have been repeatedly reported.38

At each site, a DSG-Ocean (Loggerhead Instruments)

recording unit was deployed in December, prior to the grou-

per spawning season and recovered in June. Each unit was

programmed to record ambient sounds for 20 s at 5 min inter-

vals at a sample rate of 10 kHz to optimize battery life. These

recordings were made onto an SD memory card and down-

loaded as one.wav file for each 20 s recording. This cycle

generates 288 files per day that are stored in independent

folders with 9999 files each. Each file can be heard with noise

canceling headphones or visualized with acoustic analysis

software. Grouper sounds were quantified per file by visual

inspection of spectrograms using Ishmael Bioacoustics soft-

ware. Each file was displayed and classified by an observer

depending on the pattern, duration, and frequency of each

signal. Sounds were summed by species for each file and

pooled as necessary for comparison with the algorithm detec-

tions. The presence of at least one CAS per species was com-

pared with the results of the algorithm detections. The files

used for the human analysis were not modified for the auto-

mated classification.

III. FEATURES EXTRACTION

We now present the sequence of the acoustic files

processing for each features extraction method, MFCC, and

MRAF, respectively.

A. Mel frequency cepstral coefficients

An MFCC process converts linear spectrum into nonlin-

ear mel-spectrum. The corresponding relationship between

the linear-scale frequency f and the mel-scale frequency fmel

is shown below

fmel ¼ 2595 log10 1þ f

700

� �
: (1)

TABLE I. Groupers sounds characteristics.

Type of Species Frequency range (Hz) Peak frequency (Hz) Bandwidth (Hz) Duration (s)

Red hind 50–350 213 6 23 38.2 6 18.5 1.78 6 1.02

Nassau Grouper 90–150 99 6 33.6 22.4 6 12.2 1.6 6 0.3

Yellowfin Pulse train 101.4–132.4 120.46 6 7.45 33.03 6 6.13 2.96 6 0.97

Yellowfin Tonal call 88.9–141.7 121.04þ 12.57 43.18 6 4 3.14þ 0.95

Black Grouper 60–150 108 6 9 31 6 6.3 1.7 6 0.85
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MFCC is calculated using a 1024 point fast Fourier transform

with a 0.1 s frame length using a Hamming window and over-

lap 50%. The Hamming window function is multiplied with

the signal results in a 1024 length non-zero frame. The

Hamming window was chosen because of its high frequency

domain resolution and low spectral leakage. This results in a

FFT with 1024 unique points for each frame. Once the FFT is

calculated for each frame the spectrogram is estimated by

taking the squared absolute value of each frame’s FFT, and

triangular filer bank were applied to the squared absolute

value. Discrete Cosine transform and Lifer were applied to

the output of the filter bank to get MFCC’s coefficients. The

flow chart of calculating the traditional MFCC is shown in

Fig. 2.

The traditional MFCC only represent the sound feature

but does not consider the dynamic characteristics of the

sound. In order to improve the performance, the popular

method is to combine the traditional MFCC and its first-order

differential coefficients,33 which can effectively reflect the

dynamic characteristics of the sound. However, this approach

increases both the dimension of the parameters and the com-

putational complexity of the sound recognition system.

In this paper, an optimization algorithm is proposed

using the weighted dynamic MFCC.46 Assuming the new

weighted dynamic MFCC as WMFCC, the equation is shown

as follows:

WMFCC ¼ MFCCþ a1 DMFCCþ a2 D2MFCC; (2)

where DMFCC is the first-order differential coefficient,

D2MFCC is the second-order differential coefficient, with

a1 and a2 as their weights, respectively. The weight parame-

ters are calculated by using the simple cyclic rule. In the

cyclic rule, one weight kept constant and the other weight is

selected to minimize the cost function:

arg min
a1;a2

1

n

XN

i¼1

½li � l̂i a1; a2ð Þ�2; (3)

where li; l̂ i are, respectively, training label and classified

label for the ith data point. The process is repeated with the

role reversal for the two weights until the weight variations

are below a preset threshold. In each iteration, the golden

rule is applied to select an optimal value of the weight.47

The golden rule is an extension of the bisection rule. In the

bisection rule, an interval is repeatedly bisected with a ratio

of 1:1 and a sub-interval is selected in which the optimal

solution must lie. The golden rule cuts the internal into two

sub-intervals with a golden ratio of 1:1.618 instead of 1:1.

The weighted dynamic MFCC could characterize

the grouper sound’s voiceprint features and the dynamic char-

acteristics of the sound. As a result, by using these feature

parameters, the computational complexity of the system is

significantly reduced while maintaining a high recognition

rate. In Eq. (2) of this new coefficient WMFCC represents the

new features, the element MFCC depicts the sound channel

characteristics, DMFCC reflects the sound rate, and D2MFCC

provide information similar to acceleration of sound. Let M
¼MFCC, DM¼DMFCC, and D2M¼D2MFCC, we have

DMi;n ¼
X2

k¼�2

kMi�k;n; (4)

D2Mi;n ¼
X2

k¼�2

kDMi�k;n; (5)

where i¼ 3, 4, 5,…,T–2 is the frame of the feature parameters

and n¼ 1, 2, 3,…,N is the dimension of the feature parameters.

The weighted dynamic MFCC has the same dimension

as MFCC and takes advantages of dynamic features. The fea-

ture parameters with the concept of the weighted dynamic

MFCC would have better performance at capturing underwater

sounds. However, the dimension of the coefficient matrix in

Eq. (2) is less by 67% in comparison to the matrix in Eq. (6):

WMFCC ¼
MFCC

a1 DMFCC

a2 D2MFCC

2
64

3
75 : (6)

The new chart to derive the WMFCC method if now shown

in Fig. 3.

B. Multiresolution features

We now describe the MRAF, which encodes the multi-

resolution energy distributions in the time-frequency plane

based on the cochleagram representation of an input signal. We

incorporate a number of cochleagrams at different resolutions

to design the MRAF features set. The cochleagram with high

resolution captures the local information, while the other low-

resolution cochleagrams capture the contextual information at

FIG. 2. Block diagram of MFCC extraction. FIG. 3. Block diagram of WMFCC extraction.
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different scales. These scales are used to catch the time fre-

quency behavior of the sound signal at different resolutions.48

To compute the cochleagram, we first pass an input signal to a

gammatone filter bank, where the impulse response of a partic-

ular gammatone filter has an impulse response given by

hðtÞ ¼ ta�1 e�2pbfc t cosð2pfctÞ; (7)

where parameter a is the order of the filter, fc denotes the

center frequency while bfc refers to the bandwidth given fc.
Figure 4 shows the frequency response of gammatone filter

banks.

The gammatone filter function is used in models of the

auditory periphery representing critical-band filters where the

center frequencies fc are uniformly spaced on the equivalent

rectangular bandwidth (ERB) scale. The relation between bfc
and fc is given by

bfc ¼1:019�ERBðfcÞ¼1:019�24:7ð4:37� fc=1000þ1Þ:
(8)

Each response signal from the gammatone filter bank is

divided into 20 ms frames with a 10 ms frame shift to extract

high resolution features. Furthermore, each response signal

from the gammatone filter bank is divided into 200 ms frames

with a 100 ms frame shift to obtain low resolutions. The low

resolution and high resolutions cochleagram features repre-

sent the local information and global information of the sound

signal, respectively. It has been shown that cochleagram

features at a low resolution, i.e., frame length¼ 200 ms, can

detect patterns of noisy speech better than those at only a high

resolution. Meanwhile, high resolution features complement

low resolution ones.

MRAF feature set provides contextual information by

including the energy distribution in the neighborhood of each

T-F unit. The steps for computing MRAF are as follows.

Step 1: Given an input of sound data, compute the first 64-

channel cochleagram, CG1. A log operation is applied to

each T-F unit.

Step 2: Similarly, compute CG2 with the frame length of

200 ms and frame shift of 100 ms.

Step 3: CG3 is derived by averaging CG1 across a square

window of 11 frequency channels and 11 time frames cen-

tered at a given T-F unit. If the window goes beyond the

given cochleagram, the outside units take the value of zero

(i.e., zero padding).

Step 4: CG4 is computed in a similar way to CG3, except

that the window size is (5*5).

Step 5: Concatenate CG1-4 to obtain the MRAF feature

vector.

Step 6: Calculate the dynamic features delta and delta square.

Step 7: Weight the dynamic features DMRAF and

D2MRAF, and add them to the static features.

WMRAF ¼ MRAFþ w1 DMRAFþ w2D
2MRAF; (9)

where w1 and w2 are weighted parameters. The weights

parameters are calculated by using golden rule.47 Considering

their different contribution to the speech feature parameters,

the constraint condition should be set as: w1 < w2 < 1 (w1

¼ 0.27, w2¼ 0.571).

Figure 5 shows the WMRAF algorithm.

IV. CLASSIFIERS

In this section, a summary of classifiers is given.

A. K-nearest neighbors

KNN is a simple classifier, which is based on the clus-

tering of the elements that have the same characteristics. It

decides the class category of a test example based on the

classes of its k neighbors that are near to it. The value of k in

the KNN depends on the size of dataset and the type of the

classification problem.49

B. Support vector machine

SVM, derived from the theory of Structural Risk

Minimization, was first introduced by Vapnik50 Detailed

information and further references can be found in Refs. 51

and 52 SVMs are classifiers that can be separate objects into

their respective groups using lines or hyperplanes that are

derived from the objects. When it is not possible for a straight

line to separate the objects, a kernel transformation can rear-

range the objects so that their separation by a hyperplane is

possible. Next we go over the SVM algorithm.

Given a training set {xi, yi} consisting of training vec-

tors xi 2 Rn and their corresponding labels yi 2 {�1, þ1}, a

kernel function K(x, y), and a parameter C, the SVM classi-

fier finds an optimal separating hyperplane in F. This is done

by solving the following quadratic programming problem:

Choosing the vector k, a collection of ai, which maximizes

W kð Þ ¼
XN

i¼1

ki �
1

2

XN

i¼1

XN

J¼1

kikj yiyjk xi; xjð Þ (10)

under the constraintsFIG. 4. (Color online) An example of gammatone filter bank.
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XN

i¼1

kiyi ¼ 0 and 0 � ki � C 8i: (11)

The parameter C> 0 allows us to specify how strictly

we want the classifier to fit to the training data (a larger C
meaning more strictly). The output of SVM is

f ðxÞ ¼
XN

i¼1

kiyiKðxi; xÞ; (12)

where f(x)> 0 means that x is classified to class þ1. The

training vectors xi for which the ki are greater than zero are

called support vectors.

C. Sparse classification

In a classification problem, labeled training data feature

vectors from different classes are used and then the test data

feature vector v is assigned to a particular class, using an

algorithm. For example, in a grouper sound task, feature

vectors are obtained by using WMFCC and converted to a

vector of length M (M¼ 5004). Assuming that all training

feature vectors, from the ith grouper sound are placed in a

matrix Ai as column vectors to serve as exemplars;

Ai ¼ ½ vi1 vi2 � � � viN�, where viN represents the Nth training

feature vectors of the ith grouper sound.

If y is a test feature vector (M � 1) from the ith grouper

sound, then y can be represented as a weighted linear combi-

nation of all entries in Ai;

y ¼ ci1vi1 þ ci2vi2 þ � � � þ ciNviN; (13)

where cij are scalar quantities (weights) to be determined. In

order to determine the class of y (i.e., finding the weights), a

global exemplar dictionary matrix A (M � L) needs to be

developed to include training feature vectors from all k clas-

ses (groupers) by concatenating Ai (i¼ 1,…,K).

A ¼ A1;A2;…;AK½ �

¼ v11 v12 � � � v1N
..
.
v21 v22 � � � v2N

..

.
vK1 vK2 � � � vKN

h i
M�L;

where L¼K*N. The number of column vectors in A1;A2;
A3;… depends on the number of training available for each

grouper species. For simplicity, it is assumed that all classes

have the same number of training features (N). Now the test

vector y can be represented as a linear combination of all k
classes of training feature vectors in the matrix A above by

using vector x, i.e.,

y½ �M�1
¼ A½ �M�L x½ �L�1: (14)

The linear system of Eq. (14) can be solved and the class of

y can be found by using the information in x. For example, if

y belongs to red hind grouper, then the weights of x (i.e., 0s)

that are not associated with the red hind grouper should ide-

ally be zero.

x ¼ c11 c12 � � � c1N
..
.
0; 0;…; 0..

.
0; 0; 0;…

h iT

: (15)

Ideally the vector x will exhibit a high level of sparsity, and

the non-zero weights will correspond to exemplars from red

hind grouper. In practice this sparsity condition is enforced by

choosing an appropriate solution to the system of linear equa-

tions in Eq. (14). The feature vector dimension M is much

smaller than L; (M � L). Therefore, the system, y¼Ax, has

more unknown a’s than equations (i.e., an underdetermined

system) and has infinite solutions.53,54 In order to obtain a sin-

gle well-defined solution, and preferably in this case the spars-

est solution, additional criteria are needed and this is achieved

using the following optimization techniques.

Find the weight vector, x, such that y¼Ax and kxk1 is

minimized. That is,

minxkxk1 subject to y ¼ Ax; (16)

where kxk1 is the ‘1 norm. This will lead to a sub-optimal

solution where iterative methods like the matching pursuit and

orthogonal matching pursuit are used and the measurements

are noisy. A generalized version of Eq. (16) is given below:

minxky� Axk1 þ bkxk1; (17)

where the vector y is noisy and assumed to be generated

by y ¼ Axþ e and e is a Gaussian white noise vector. The

FIG. 5. A proposed WMRAF block

diagram.
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regularization parameter b ð0 < b < 1Þ controls the weight

of the ‘1-norm. Equation (17) is known as the LASSO prob-

lem and can be modified to impose a mixture of an ‘1-nor-

mand ‘2-norm constraints on x and is given below:

minx ky� Axk2
2 þ ð1� bÞkxk1: (18)

Equation (18) is known as the elastic net problem. The ‘1

term enforces the sparsity of the solution and the ‘2 penalty

has a smoothing effect that stabilizes the obtained solution.

Once the underdetermined linear system y¼Ax is solved

using Eqs. (16) or (17) or (18), the weight vector x can

be used as a new feature extracted from the test vector y for

classification purposes. The new feature vector x, should

be as discriminative as possible between many classes (or

groupers). Ideally, the new feature vector x should have non-

zero entries associated with the class (grouper species) of

test vector y as in Eq. (13). The modeling error can cause

non-zero values at the entries of x other than those of the

class of y. Therefore, the contribution of individual class (or

grouper species) in the dictionary A is represented by the

test vector y, should be calculated in terms of residual error

for classification purposes. The residual error Ri of the ith
class is calculated by retaining the weights associated with

that class in the vector x and setting all the other entries in x
that are not associated with the ith class to zero. The residual

error for the ith class is given in Eq. (19):

Ri ¼ ky� Axik2 (19)

where

xi ¼ 000 � � � ..
.
� � � … ..

.
ci1 ci2 � � � ciN

..

.
0; 0;…; 0..

.
0; 0; 0;…

h iT

:

The residual error can be normalized as follows:

Rin ¼
ky� Axik2

kyk2

: (20)

V. EXPERMENTAL RESULTS

The results of human detection analysis were totaled by

day by adding the files with positive grouper detections per

species within a calendar day. These were then compared

to the algorithm detections per species for the same dataset.

FIG. 6. (Color online) Monthly sum of files with fish sounds from the human

classification and the automated classification based on MFCC at Bajo de

Sico. ESRTI¼E. striatus; EGUT¼E. guttatus; MBON¼M. bonaci; MVEN

¼M. venenosa.

FIG. 7. (Color online) Monthly sum of files with fish sounds for E. guttatus
from the human classification and the automated classification based on

MFCC at ALS.

FIG. 8. (Color online) Monthly sum of files with fish sounds from the human classification and the automated classification based on MFCC at Mona Island

for M. venenosa.

672 J. Acoust. Soc. Am. 143 (2), February 2018 Ibrahim et al.



The classification methods were evaluated in terms of classi-

fication results for each of the four grouper species. The

identification results based on MFCC and Sparse classifier

are shown in Figs. 6, 7, and 8 for BDS, ALS, and Mona

Island, respectively.

The dominant species at BDS (Fig. 6), regardless of the

month was E. striatus followed by E. guttatus, M. venenosa,

and M. bonaci as shown in Table II. Figure 6 shows a small

but consistent difference between MFCC and the human

classification of O (10) mostly for E. striatus. At ALS (Fig. 7),

the dominant species is E. guttatus, but the difference between

human and MFCC based detection is quite significant (O

(800)) at the peak of the aggregation in January.

At Mona Island (third site) the dominant species is M.
venenosa (Fig. 8). The difference between the human classi-

fication and the automated classification based on MFCC is

lower than that observed at ALS. It was about the same order

of magnitude as BDS for E. striatus (not shown).

The following parameters were used to extract the acous-

tic features with MFCC at all sites: window length¼ 0.1 s,

number of MFCC features¼ 13, MFCC window overlapping

¼ 50%. WMFCC parameter a1 ¼ 0:6 and a2 ¼ 0:34 were

used to combine dynamic features and reduce the complexity

of the feature space. The percentage of average classification

accuracy was calculated as Tp/(TpþFn), where Tp is the num-

ber of true positive detections and Fn the number of false

negative detection estimated from the human detection analy-

sis. The accuracy with 95% confidence interval obtained by

using MFCC features for the three datasets and all species

are 77.56% 6 1.56%, 74.93% 6 2.46%, 76.46% 6 1.61%, for

ALS, BSD, and Mona Island, respectively. The addition of

dynamic characteristics of the sounds to MFCC improved the

accuracy of MFCC as shown in Fig. 9. The percentages of

average classification accuracy with the WMFCC features for

the same three datasets became 82.81% 6 1.85%, 80.4%

6 2.29%, 83.64% 6 1.78% with 95% confidence interval,

respectively. One-tail t-tests also confirmed with 95% confi-

dence that the accuracy performance of WMFCC features is

superior to that of the MFCC features. For both features

extraction methods, the performance of the classification was

not uniform between species. E. guttatus and E. striatus
had the highest detection rate, while M. bonaci detection rate

was 30% lower than the previous two (Fig. 9). This difference

was however reduced by 15% with WMFCC based features

extraction.

A similar comparison was conducted between MRAF

and WMRAF (Fig. 10) and a similar improvement per spe-

cies was obtained. As for MFCC and WMFCC, the two high-

est identification percentage in both methods was for E.
guttatus and E. striatus. M bonaci had the lowest classifica-

tion performance and the improvement due to the dynamics

features was not as significant as for the WMFCC method

(Fig. 10).

We now compare the results for all four features extrac-

tion methods, for each species in Table III. This shows that

WMFCC is the best features extraction method for classifica-

tion of E. guttatus and M. bonaci, with an accuracy of 86.1%

and 67.3%, respectively. However, WMRAF has highest

identification rate for classification of E. striatus, which is

85.3% and M. venenosa, which is 80.1%. These results sug-

gest that the performance of the features extraction method is

species dependent.

Finally using WMFCC as features extraction method,

we evaluated the relative performance of the classifiers KNN,

sparse and multiclass support vector machine (MSVM).

Results in Table IV show that the sparse classifier outper-

formed in average the other classifiers for the classification of

sounds of all four grouper species.

Moreover, a twofold cross validation procedure was

adopted for 100 data files for each class to evaluate their

TABLE II. Classifications results based on MFCC at BDS.

E. striatus E. guttatus M. venenosa M. bonaci

January 170 152 78 14

February 217 31 24 4

March 245 6 7 13

April 31 1 4 2

May 11 3 2 3

June 8 5 2 0

FIG. 9. (Color online) Accuracy of MFCC and WMFCC in sound classification per species. See Fig. 6 for the definition of species’ names.
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respective influence on the performance of the classification

algorithm and remove any bias due to a different number per

class. Table V shows the results for all four feature extrac-

tion methods with the Sparse classifier. The absolute and

relative accuracy increased for all classes, with the most sig-

nificant benefit for M. bonaci. This confirms that M. bonaci
remains the species the most difficult to digitally classify

among the four (although the easiest to classify by humans

because it is very different from the others), while E. gutta-
tus classification seems to be the most accurate.

In addition to the overall better performance of WMFCC

over WMRAF, there is one other advantage in using the

WMFCC features extraction method over WMRAF. In con-

trast to the 2D cochleagram based approach in WMRAF, the

features used in WMFCC are extracted from 1D time signals.

Therefore the computational cost of the WMFCC algorithms

is orders of magnitude lower, which makes it more suitable

for real-time applications on energy limited autonomous

platforms.

We also compared WMFCC with the concatenated

MFCC (CMFCC) feature extraction algorithm. The CMFCC

extractor lists MFCC, its derivative and double derivative in

a single vector. Table VI provides the result using the sparse

classifier. It can be seen that in terms of accuracy, CMFCC

performs better in some cases and worse in other cases in

comparison to WMFCC. We also used the principal compo-

nent analysis (PCA) algorithm to reduce the dimension of

the feature vector. Again after significant dimension reduc-

tion on CMFCC, the accuracy performance of the algorithm

is still close to that of WMFCC.

VI. CONCLUSIONS

This paper introduces an automated detection and classi-

fication method for sounds produced by four grouper spe-

cies, red hind (E. guttatus), Nassau (E. striatus), yellowfin

(M. venenosa), and black (M. bonaci) grouper. The data

were recorded at known spawning aggregation sites during

the reproductive season, and most of the grouper vocaliza-

tions are associated with courtship behavior and consist of

TABLE III. Classification results using the four features extraction methods,

MFCC, WMFCC, MRAF, and WMRAF for sounds produced by all four

species.

EGUT MVEN ESTRI MBON

MFCC 79.34% 73.64% 82.38% 54.81%

WMFCC 86.10% 78.30% 83.6% 67.25%

MRAF 83.46% 78.79% 82.17% 56.30%

WMRAF 85.31% 80.10% 85.3% 63.70%

TABLE IV. Comparison of different classifiers, KNN, Sparse and MSVN.

EGUT MVEN ESTRI MBON

KNN 87.30 63.60 71.60 48.30

Sparse 86.10 78.30 83.41 67.25

MSVM 85.74 72.14 80.19 63.49

FIG. 10. (Color online) Accuracy of MRAF and WMRAF in sounds classification by species.

TABLE V. Twofold cross validation for 100 data files per species, for four

feature extraction methods.

EGUT MVEN ESTRI MBON

MFCC 86% 84% 78% 69%

WMFCC 91% 86% 82% 72%

MRAF 88% 81% 80% 70%

WMRAF 89% 81% 81% 70%

TABLE VI. WMFCC vs CMFCC þ PCA with 100 dataset per species.

EGUT MVEN ESTRI MBON

WMFCC 91% 86% 82% 72%

CMFCC 96% 88% 78% 80%

CMFCCþPCA

(33% dimension reduction)

94% 84% 72% 70%

CMFCCþPCA

(67% dimension reduction)

88% 72% 84% 80%
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tonal and pulse train calls. The acoustic dataset was first ana-

lyzed by human visual and auditory identification and then

used as verification for the automated detection. We evalu-

ated the performance of four acoustic features extraction

methods. First MFCC and MRAF were evaluated on all data-

set and compared. Then, the weighted dynamic acoustic fea-

tures were applied to each method and their new accuracy

compared. Experimental results have shown improved per-

formance by WMFCC over MFCC features, and that this

method outperformed MRAF and WMRAF methods overall.

Further empirical studies revealed that the CMFCC algo-

rithm also performs very well, even after a significant

dimension reduction. The proposed methods transform ocean

sounds and extract features in the time-frequency space. The

Sparse representations classification of the WMFCC or

CMFCC showed the best results over KNN and MSVN for

all species. However, the features extraction methods used in

this study consistently showed the same pattern of accuracy

per species. E. gutattus and E. striatus were the most suc-

cessfully classified species, while M. venenosa was slightly

lower than the previous two and M. bonaci had the lowest

accuracy rate of all. When the bias due to the different num-

ber of calls per class was removed, the difference between

all four features extraction methods was reduced and M. ven-
enosa became the second best classified (Table VI). But

M. bonaci (E. guttatus) remained the least (most) accurate.

All features extraction methods delivered almost identical

results to the human detection, which provides confidence in

the usefulness of such methods at classifying large datasets

of ocean acoustic data. However, there were significant dif-

ferences between the human and digital classification

according to the aggregation site (Figs. 6, 7, and 8).
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