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ABSTRACT

Snapping shrimp dominate the high frequency soundscape in shallow warm waters. The noises produced by these small
creatures are a result of the collapse of cavitation bubbles they produce. During the rapid collapse, the temperatures in
the bubble can momentarily reach the surface temperature of the sun, and produce impulsive noise with source levels
higher than 190 dB re 1 µPa @ 1m. With millions of snapping shrimp in most warm shallow water environments, the
resulting cacophony is heard in the form of a background crackle familiar to many tropical divers. The resulting ambient
noise has highly non-Gaussian statistics. What implications does this have on acoustic sensing in these environments?
Can signal processing techniques developed with Gaussian noise assumptions be used without significant penalty in
these environments? Can these shrimp be used as sources of opportunity for sensing? To begin answering some of
these questions, we present a review of some of the research on signal processing in impulsive noise. Snapping shrimp
noise is modeled accurately by symmetric α-stable distributions. Optimal signal processing in α-stable noise is often
computationally infeasible, but computationally simple near-optimal solutions can be applied with gains up to 5-10 dB.
Communicating in environments with snapping shrimp noise has its own challenges. The errors due to the impulsive
noise on sub-carriers of a multi-carrier communication system, or the in-phase and quadrature channels of a single
carrier system are not independent. If handled inappropriately, forward error correction codes can perform poorly in
such systems. However, if the dependence in the errors can be characterized, it can be exploited in the decoding process
to get substantial communication performance gains. We show this through an information theoretic analysis of the
communication channel with additive symmetric α-stable noise. Finally, we turn to some applications where the snapping
shrimp sounds can be used as sources of opportunity. They can serve as “illumination” for ambient noise imaging, where
underwater objects can be imaged completely passively. They can also be used as sources for geoacoustic inversion of
the surface sediment. We present some results from past experiments to show how sediment sound speed can indeed be
inferred by simply listening passively to the cacophony of the shrimp.

INTRODUCTION

Snapping shrimp (family Alpheus and Synalpheus) dominate
the high frequency soundscape in shallow warm waters. They
produce loud snapping sounds by extremely rapid closure of
their snapper claw. The closure produces a high-velocity water
jet leading to the formation of a cavitation bubble, which col-
lapses rapidly, causing a loud broadband snapping sound (Ver-
sluis et al. 2000). During the rapid collapse, the temperatures
in the bubble can momentarily reach the surface temperature
of the sun (Lohse et al. 2001), and produce impulsive noise
with peak-to-peak source levels higher than 190 dB re 1 µPa
@ 1m (Au and Banks 1998, Koay et al. 2003). The permanent
crackling background noise in warm shallow waters through-
out the world is attributed to numerous snaps from millions of
shrimp inhabiting these waters. At low frequencies, noise from
shipping is significant; above 2 kHz snapping shrimp noise
dominates (Potter et al. 1997c). As ambient snapping shrimp
noise is composed of impulsive noise sources, the resulting
noise statistics are highly non-Gaussian (Nielsen and Thomas
1989, Potter et al. 1997a, Chitre et al. 2006).

Several noise models have been put forward to model the statis-
tics of snapping shrimp dominated ambient noise. The power
distribution of the noise is shown to be closely approximated
by the log-normal distribution (Potter et al. 1997a, Potter and

Chitre 1999). In signal processing applications, we are often
interested in the amplitude distribution rather than the power
distribution; the power distribution can easily be derived from
the amplitude distribution if desired. Several amplitude distribu-
tion models such as the Gaussian-Gaussian mixtures, Gaussian-
Garnele mixtures, Cauchy and α-stable have been tested against
data from various shallow warm water locations (Chitre et al.
2006, Legg 2010). Of these, the symmetric α-stable (SαS)
model has been found to model most data sets accurately with
only a few parameters. Moreover the use of the model is also
motivated by a strong theoretical basis given by the generalized
central limit theorem, which states that the sum of i.i.d. random
variables with or without a finite variance converges to a stable
distribution by increasing the number of variables (Samorodnit-
sky and Taqqu 1994). We therefore use this model throughout
this paper, although the key arguments made remain unchanged
even under other impulsive noise models. In addition to the
amplitude distribution, the temporal dependence of the noise
process is also of importance in signal processing. Various mod-
els for the temporal dependence have been explored by Legg
(2010).

We ask the following questions in light of the highly non-
Gaussian ambient noise found in warm shallow waters: What
implications does the non-Gaussian noise have on acoustic sens-
ing? Can signal processing techniques developed with Gaussian
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noise assumptions be used without significant penalty? Can
these shrimp be used as sources of opportunity for sensing?
The first question forms the theme of the paper and is answered
throughout the paper. The second question has a clear negative
answer as we shall demonstrate in the next section. With appro-
priate non-Gaussian noise based signal processing, we can reap
significant benefits – and in many cases, the resulting signal
processing algorithm is simple to implement. Encouragingly,
the last question has a positive answer and we review a few
research findings where snapping shrimp have been used as
sources of opportunity.

SIGNAL PROCESSING & COMMUNICATION

In this section, we review a few key results in signal processing
and communication in the presence of snapping shrimp noise
(modeled as SαS noise).

Symmetric α-stable noise distribution

The impulsive nature of snapping shrimp noise results in large-
amplitude excursions from the average more frequently than
in the case of Gaussian noise. The probability density function
(PDF) of such noise decays less rapidly than the Gaussian PDF,
leading to heavy tails. The family of stable distributions pro-
vides a useful theoretical tool for such signals (Samorodnitsky
and Taqqu 1994). Stable distributions are a direct generalization
of the Gaussian distribution and include the Gaussian distribu-
tion as a limiting case. The characteristic exponent (0 < α ≤ 2)
of the distribution controls the heaviness of the tails. A small
positive value for α represents a highly impulsive distribution
while α close to 2 indicates Gaussian-like behavior. When
α = 2, the distribution reduces to a Gaussian distribution. An
important subclass of the stable distributions is the SαS distri-
bution, which is well-suited to describe the observed zero-mean
symmetric heavy tailed PDF of the snapping shrimp noise. Most
snapping shrimp data sets are best described by SαS distribu-
tions with values of α in the range of 1.5 to 1.98 (Chitre et al.
2006, Legg 2010).

The SαS distribution is most conveniently described by its
characteristic function:

φα (ω;c) = e−|cω|α (1)

where α is the characteristic exponent and c is a scale param-
eter. The PDF fα (x;c) of the distribution with a characteristic
function φα (ω;c) is given by

fα (x;c) =
1

2π

∫
∞

−∞

φα (ω;c)eiωxdω (2)

The SαS distribution does not have a general closed-form PDF
fα (x;c) or cumulative distribution function (CDF) Fα (x;c) ex-
cept in the special cases of Cauchy (α = 1) and Gaussian
(α = 2) distributions. Efficient numerical approximations allow
computation of the PDF for other values of α (Nolan 1997,
McCulloch 1998).

Signal detection

The problem of detecting a known signal with unknown ampli-
tude in noise is commonly encountered in many applications.
If the known signal xt with an amplitude A is present in the
observed data yt , we have

yt = Axt +nt (3)

where nt is the noise. If the noise statistics are known, an opti-
mal detector can be designed based on the maximum-likelihood
(ML) criterion. When the noise is Gaussian, the ML detector is
the familiar linear correlator (LC) (Tsihrintzis and Nikias 1995).
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Fig. 5. Detection curves for ML, LO, SC, and LC detectors at SNR of 10 dB.

than the SC. However, it is more common to operate the detector
at low values of .

Fig. 5 shows the detection curves at a moderate SNR of 10 dB.
The same trend is clearly visible; the ML and LO detectors are
the best, followed by the SC, and then the LC. The LC again
cannot achieve as low a as the others. At high values of de-
tection probability and consequently , the LC performance
is somewhat worse than the other detectors. At intermediate
values of , the SC and LC performances are similar, but not
as good as the ML and LO detectors.

At a high SNR of 15 dB, the SC performs only slightly worse
than the ML and LO (Fig. 6). The LC is consistently inferior; it
fails to achieve low and this trend continues at even higher
SNRs.

Fig. 7 shows the performances of the detectors over a SNR
range 0–30 dB for a probability of false alarm rate of se-
lected by choosing a detection threshold empirically. Although
the detection curves suggest that the ML and LO detectors are
significantly better than the SC detector, the low perfor-
mance of the SC detector is only slightly inferior to the ML and
LO detectors. The LC detector is considerably poorer, with a re-
quirement of about 5–10 dB higher SNR for the same detection
level.

The near-optimal performance and low complexity of the SC
detector at low SNR makes it attractive for use as a detector in
snapping-shrimp dominated ambient noise. When performance
requirements are critical and the noise probability distribution
parameters are known, an ML or LO detector may be used. The
LO detector is simpler to implement and computationally less
intensive than the ML detector. However, the latter has the ad-
vantage that it also provides an estimate of the signal amplitude,
which the LO and SC detectors cannot do.

B. Experimental Validation

Although the simulations used ambient noise data recordings
from the sea, actual mixing of the noise with the signal was per-
formed numerically. The tests suggested that the SC detector

Fig. 6. Detection curves for ML, LO, SC, and LC detectors at SNR of 15 dB.

Fig. 7. Performance of a detector based on ML, LO, SC, and LC.

should have a superior performance to the LC detector for data
recorded in Singapore waters. To test whether this is indeed true,
we tested both detectors with field data. The ML and LO detec-
tors were not tested due to computational limitations and the
unavailability of independent ambient noise samples to obtain
detailed noise statistics.

A spread-spectrum signal with center frequency 40 kHz,
spread 40 kHz and duration 30 ms was transmitted and recorded
over a distance of 550 m in Singapore waters. Fig. 8 shows
the experimental setup. The signal was repeated 100 times at a
repetition rate of 10 transmissions per second. The signal was
acquired at a sampling rate of 250 kSa/s and stored for later
analysis.

Before detection, the received signal was prewhitened and
bandpass filtered to reduce out-of-band noise. The filtered signal
was then passed through LC and SC detectors with a threshold
chosen to satisfy a of . For this false alarm rate and
a 10-s data set sampled at 250 kSa/s, one would expect 2.5
false alarms. Of the 100 transmissions, the LC detector correctly

Source: Chitre et al. (2006)

Figure 1: Detection performance of various detectors (ML, LC,
LO and SC) at a false alarm probability (PFA) of 10−3 in snap-
ping shrimp noise.

Unlike the general ML detector, the LC does not require knowl-
edge of the standard deviation of the Gaussian distribution. In
the presence of non-Gaussian noise, the LC is no longer optimal.
In spite of this, many signal processing algorithms still use the
LC for signal detection in non-Gaussian noise due to its simple
implementation and the lack of detailed statistical information
about the noise. Nielsen and Thomas (1989) explored the use
of non-parametric detectors in snapping shrimp noise but con-
cluded that the LC performed better than the non-parametric
techniques that they tried. Bertilone and Killeen (2001) mod-
eled snapping shrimp noise using a Gaussian-Gaussian mixture
and found that locally optimal (LO) detectors performed better
than the LC at low SNR. The LO detector is parametric and re-
quires detailed knowledge of the noise parameters. Chitre et al.
(2006) showed that snapping shrimp noise can be described ac-
curately by the SαS distribution and demonstrated that optimal
(ML and LO) detectors based on the SαS distribution perform
approximately 5-10 dB better than the LC in such noise environ-
ment. They also showed that the nonparametric sign correlation
(SC) detector is a near-optimal alternative with typically less
than 1 dB loss as compared to the ML detector (see Figure 1).
The output T of the SC detector is simple to compute from the
known signal xt and the observed data yt :

T = ∑
t

sgn(yt)xt (4)

where sgn(x) is the signum function with a value 1 when x is
positive, -1 when x is negative and 0 otherwise. The output is
compared to a predetermined threshold to decide whether the
observed data yt contains the known signal xt .

Since the SC detector is non-parametric, is very simple to im-
plement and yields significantly better performance than the
LC detector in presence of impulsive noise, it is suited to many
signal detection tasks in snapping shrimp dominated waters.

Coherent communications

The performance of coherent communication systems such
as phase-shift keying (PSK) in additive white Gaussian noise
(AWGN) is well understood (Bernard 2001). The performance
of various forward error correction (FEC) codes in such chan-
nels has also been extensively studied. However, the perfor-
mance of these modulation and FEC schemes in presence of
impulsive noise generated by snapping shrimp has received
very little attention. Chitre et al. (2007) analyzed the perfor-
mance of bipodal signaling schemes (such as binary PSK) in
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Fig. 4. Performance of uncoded system (dashed line) in comparison to coded
system with hard decision decoding (solid line with cross), Euclidean met-
ric (solid line with plus), 1-norm metric (solid line with star), and maximum
likelihood decoding (solid line with dots).

Viterbi decoding with a 1-norm metric in an AWSαSN channel.

Pb ≈
∞∑

d=df

cdQ

×
√

d exp (p21α2 + p11α + p01)
(

R
Eb

N0

)p2 2 α2 +p1 2 α+p0 2

,

p21 = 0.0566, p11 = 0.3850, p01 = −0.4077,

p22 = 0.0766, p12 = 0.0417, p02 = 0.1860. (14)

V. RESULTS

We simulated a coded BPSK communication system in an
AWSαSN channel with a half-rate Odenwalder code. In Fig. 2,
we see that the theoretical upper bound derived in (8) is ap-
proximately 1 dB higher than the simulation results for hard

decision decoding. In Fig. 3, we see that the theoretical upper
bound derived in (13) is approximately 2–4 dB higher than the
simulation results for 1-norm decoding. The bound is loose at
low Eb /N0 and high α, and becomes tighter when the noise
becomes more impulsive and at higher Eb /N0 . The closed-form
approximation in (14) matches the simulation results closely.
Fig. 4 compares the performance of various decoding schemes
in impulsive noise. The decoding with Euclidean metric shows
poor performance with little gain over the uncoded system. The
hard decision decoding performs significantly better. The max-
imum likelihood decoding is optimal and demonstrates the best
performance, approximately 2 dB better than that of the hard
decision decoding. The performance of the decoding using the
1-norm metric is very close to that of the maximum likelihood
decoding. As the computational complexity of the 1-norm met-
ric is much lower than that of the maximum likelihood metric
and does not require an estimate of the noise dispersion, it is a
good alternative to maximum-likelihood decoding.
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Figure 2: The performance of Viterbi decoding of convolutional
codes using various distance metrics in presence of additive
SαS noise. The x-axis shows the Eb/N0 ratio commonly used
in communication systems in place of SNR, while the y-axis
shows the probability of bit error (Pb). The uncoded system
performance is shown as a dashed line. In contrast, the hard
decision decoding is shown as a solid line with cross, Euclidean
metric decoding is shown as a solid line with plus markers,
the 1-norm metric decoding is shown as a solid line with star
markers, and the maximum likelihood decoding is shown as a
solid line with dots.

SαS noise and showed that even a small degree of impulsive-
ness can have a large impact on the performance of an uncoded
communication system. FEC codes (such as block codes, con-
volutional codes, LDPC codes, etc) are often used to combat
the errors introduced by the noise in the channel. In the same
paper (Chitre et al. 2007), the authors analyzed the performance
of convolutional codes decoded using the classical Viterbi algo-
rithm (Johannesson and Zigangirov 1999). They showed that
the soft decision Viterbi algorithm with a Euclidean distance
metric, known to be optimal in Gaussian noise, performs poorly
in SαS noise when α < 2. The hard decision version of the
algorithm (using a Hamming distance metric) performs sig-
nificantly better. A maximum likelihood Viterbi decoding is
possible, but computationally infeasible. However, a novel soft-
decision version using a 1-norm distance metric outperforms
both the Euclidean distance and the Hamming distance versions,
without adding any computational complexity to the decoding
process (see Figure 2).

Although explicitly analysis for other modulation schemes and
FEC codes is as yet unavailable, it is clear that modifications
are needed to the detection and decoding algorithms in com-
munication systems to cope with the SαS noise generated by
snapping shrimp. In fact, as we shall see in the next section, we
may need significant changes to the modulation schemes and
the FEC codes used (not just limited to the detection and de-
coding algorithms) in order to achieve the best communication
performance in snapping shrimp noise.

Multi-channel communications

In the last section, we briefly looked at the performance of
BPSK in an SαS noise channel. A quadrature PSK (QPSK)
communication system (with Grey codes) can be viewed as a
pair of orthogonal BPSK systems being used simultaneously,
and therefore we would expect the QPSK system to be able to
carry twice as much data as the BPSK system. Indeed this is

true in the case of Gaussian noise channels, where the noise
in the in-phase and quadrature channels of the QPSK system
are also Gaussian and independent. As noted by Chitre and
Armand, when the channel noise is SαS (with α < 2), this
is no longer true – the noise in the in-phase and quadrature
channels is no longer independent. If the dependency is used to
correct errors, the data carrying capacity of the QPSK system
can exceed twice the data carrying capacity of the equivalent
BPSK system. In order to exploit this dependency, the FEC
codes need to be appropriately designed and decoded.

An information theoretic analysis of a QPSK system in SαS
noise is presented by Chitre and Armand. We do not reproduce
the analysis but outline the main arguments here. The differen-
tial entropy (or just entropy, measured in bits) of a real-valued
SαS noise with PDF fα (x;c) is given by

Hα,c =−
∫

∞

−∞

fα (x;c) log2 fα (x;c)dx (5)

Since the PDF does not have a closed-form expression, we
numerically compute the entropy of the noise as a function of
α in Figure 3. The channel capacity of an real-valued additive
SαS noise channel is given by

Cα = max(HY −Hα,c) (6)

where HY is the entropy of the received signal (source signal
plus noise) and the maximization is carried out over all possible
source signal PDFs. The real-valued channel can be used to
model a BPSK system. We can therefore expect that the capacity
of the additive SαS noise BPSK system reduces as α reduces
(noise becomes more impulsive) and the noise entropy Hα,c
increases. This analysis can be applied to a QPSK system by
allowing the signal and the noise to be complex-valued, where
the real and imaginary components represent the in-phase and
quadrature channels respectively. Due to symmetry considera-
tions, we expect that the complex noise is isotropic (rotationally
invariant). Although the real and imaginary components of
complex-valued isotropic Gaussian noise are independent, the
components of complex-valued isotropic SαS noise (α < 2)
are not (Samorodnitsky and Taqqu 1994). The entropy H̃α,c of
the complex-valued SαS noise can be expressed in terms of the
equivalent real-valued SαS noise entropy and mutual informa-
tion Iα shared by the the channels due to the dependency in the
PDF:

H̃α,c = 2Hα,c− Iα (7)

Again, the mutual information Iα cannot be evaluated in closed
form, but can be numerically evaluated (see Figure 3). If the
in-phase and quadrature channels in a QPSK system are treated
separately as real-valued channels, the total noise entropy is
2Hα,c. However, the noise entropy of the complex-valued chan-
nel is 2Hα,c− Iα , and therefore its capacity is higher than the
sum of the two component BPSK channel capacities. If the
noise dependency is correctly utilized, the capacity increase
can be harnessed for a communication system. As seen from
Figure 3, the loss due to increased entropy is almost cancelled
by the increased mutual information as α reduces from 2 to 1.
Thus the capacity of a QPSK system in additive SαS noise is
not much less than that in Gaussian channels provided the com-
munication scheme (modulation and FEC code) is able to use
the dependency in the noise. Chitre and Armand suggest an ap-
proach to exploit this dependency through the use of quaternary
alphabets in the design of FEC codes.

When a multi-carrier communication (such as OFDM) system
operates in a SαS noise channel, we need to consider the depen-
dency of the noise across sub-carriers. Due to the broadband na-
ture of impulsive snaps from snapping shrimp, the noise on vari-
ous sub-carriers in the multi-carrier system is dependent (Chitre
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Figure 3: Entropy Hα and mutual information Iα for of SαS
noise for c = 1 and 1 ≤ α ≤ 2 (numerically evaluated). For
arbitrary values of c, the entropy Hα,c = Hα + log2 c.

et al. 2005). Moreover, the in-phase and quadrature channels at
each frequency are also dependent as outlined before. If an FEC
code and decoding system is designed to take into account all of
these dependencies, perhaps the multi-carrier communication
system may significantly outperform an equivalent system in
Gaussian noise. However, the information theoretic analysis
or practical implementation of such a system is not presently
available to the best of our knowledge.

SOURCES OF OPPORTUNITY

So far we have considered snapping shrimp as a source of
noise – something to contend with and mitigate the effects of.
We now turn to the possibility that the sound produced by the
snapping shrimp can be used to our benefit. Marine mammals
and fish have millions of years of evolution to learn to use
snapping shrimp sounds, so we would not be surprised if they
have already developed ways to use this sound to their own
advantage (Simpson et al. 2005, Potter et al. 1997b, Potter and
Chitre 2006, Taylor et al. 1997). We next present two different
applications where snapping shrimp are used as sources of
opportunity.

Ambient noise imaging

The idea of using ambient noise as a form of “acoustic illumina-
tion” for underwater sensing was explored theoretically almost
two decades ago (Buckingham et al. 1992). To draw a parallel
to our use of daylight for optical sensing, the idea was termed
as acoustic daylight. The first system (known as ADONIS) to
test this idea was built at the Scripps Institute of Oceanogra-
phy (Buckingham et al. 1996). ADONIS was successfully able
to image targets at ranges of about 40 m passively using the
ambient noise generated by snapping shrimp that dominate the
high-frequency soundscape around La Jolla, San Diego. The
acoustic daylight images were produced by time-averaging the
energy received at the camera from different directions. Tar-
gets present in the field of view reflect sounds incident from
different directions as compared to the background. When the
acoustic illumination is spatially anisotropic, this produces a
contrast between the targets and the background, allowing the
targets to become clearly visible in the image. However, when
the illumination is not favorable, the targets cannot be seen in
the resulting image.

Potter and Chitre (1999) studied the data generated by ADONIS
further and showed that the energy distribution of each pixel
in the image can be approximated by a log-normal PDF. Since

‘‘horizontal bar’’ and the ‘‘fenestrated cross’’ at the maxi-
mum available range of 38 m.13 These targets were com-
posed of flat 1!1 m2 reflective panels mounted on a ‘‘tic-
tac-toe’’ frame. For the horizontal bar, three squares were
placed in a horizontal row in the middle of the frame. For the
‘‘fenestrated cross,’’ additional panels were placed above
and below the middle of the bar, and the center panel re-
moved to form a ‘‘hole.’’ The 1!1 m2 ‘‘hole’’ subtends an
angle of 1.5 degrees at the receiver, and the Rayleigh reso-
lution of a 3-m aperture is expected to correspond to this
value at approximately 20 kHz. Therefore, the lower part of
the ADONIS bandwidth was expected to provide insufficient
resolution to reveal the ‘‘hole,’’ and to seriously blur the
other parts of the chosen targets. Diffraction of energy im-
pinging on the targets, resulting in less backscattered energy

to the receiver, is also expected to reduce imaging contrasts.
For this reason only frequency estimates above 26 kHz have
been used in this analysis to form images, the average fre-
quency across the bandwidth we have used being 48.3 kHz.

We proceed to show results from the mean intensity
!AD" processor in comparison to second-order methods in
both the time and spatial domains.

A. Second-order temporal statistical imaging

Some first- and second-order moment images are shown
in Fig. 3, where the original receiving pixels have been spa-
tially interpolated as a final processing step using bi-cubic
splines, a process which considerably improves the eye’s
ability to delineate important features. The top panel in

FIG. 3. ‘‘Horizontal bar’’ !left" and
‘‘fenestrated cross’’ !right" targets,
shown schematically in the upper pan-
els, with ambient noise images formed
from first !mean" and second-order
!s.d." moments shown below, calcu-
lated from 250 frames. Lower panels
show the observed probability distri-
butions of target !red" and nontarget
!blue" pixel energies for the two target
configurations.

3205 3205J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999 J. R. Potter and M. Chitre: Ambient noise imaging

Source: Potter and Chitre (1999)

Figure 4: Horizontal bar and fenestrated cross targets from
ADONIS experiment, shown schematically in the upper panels,
with ambient noise images formed from the first (mean) and
second-order (s.d.) moments shown in the lower panels.

the log-normal distribution is characterized by two independent
parameters, the authors were able to generate images by not
just time-averaging the data, but also from the second-order mo-
ment of the power distribution (see Figure 4). By using the two
independent ways to extract information from each pixel and
applying a Kalman filter to track the pixel values, the effect of
occasional unfavorable illumination could be further mitigated
to produce images more consistently. Had the ambient noise
been Gaussian distributed (with a zero mean), its power would
be χ2 distributed and characterized by a single parameter. Thus
the higher-order moment based imaging is a direct consequence
of the non-Gaussian nature of the snapping shrimp noise illu-
mination. The work by Potter and Chitre (1999) was further
extended by Lim and Potter (2002) to iteratively enhance the
images and fuse data through the use of clustering algorithms.

Inspired by the success of ADONIS, a second-generation ambi-
ent noise imaging camera (named ROMANIS) was developed
at the Acoustic Research Laboratory (ARL) of the National
University of Singapore (Pallayil et al. 2003). Rather than use
a focussing dish as used in ADONIS, ROMANIS uses a 2-
dimensional phase array of 508 sensors, each sampled at about
196 kSa/s. Unlike ADONIS where only the power measured
in selected frequency bands and pre-formed beams is recorded,
ROMANIS records pressure time-series data from all 508 sen-
sors. This yields a much richer data set for signal processing,
allowing novel imaging techniques to be developed and tested.
An initial deployment of ROMANIS in 2003 yielded images
of a target placed at 70 m range (see Figure 5). Subsequent
deployment in early 2010 has yielded images at ranges up to
120 m (unpublished results – under preparation for publication).

Geoacoustic inversion

Another example of the use of snapping shrimp as opportunistic
sources is found in the work by Chitre et al. (2003). The authors
assumed that the snapping shrimp lived near the sea bottom,
and the “snap” typically recorded by a hydrophone in the water
column consists of the combination of the direct arrival and
the bottom-reflected arrival. Due to the bottom interaction, the
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Figure 5: A schematic of a “sleeping L” target and an ambient
noise image formed at 70 m range during the first ROMANIS
deployment.

recorded snap contains information about the acoustic proper-
ties of the superficial sediment on the sea bottom. By using a
tetrahedral array of 4 hydrophones, the authors identified the
direction of arrival of each snap. By matching the recorded snap
to a model of an “ideal” snap, the authors jointly estimated
the height of the cavitation bubble collapse above the sea bed
and the angle of interaction with the sea bed. By estimating
the energy in the bottom-reflected arrival and plotting it against
the angle of interaction with the sea bed, the critical angle was
determined. The large numbers and spatially distributed nature
of snaps allow many angles of interaction to be sampled in a
short period of time. The authors further augmented the sam-
ples by also considering surface reflected arrivals which also
contain bottom-surface interactions and provide information at
much higher bottom-interaction angles. Once the critical angle
is known, it can easily be translated to a sound speed in the sea
bed.

Although the paper only estimates sound speed in the bottom,
it provides evidence that passive geoacoustic inversion using
snapping shrimp sounds as opportunistic sources may be fea-
sible. The sheer number of snapping shrimp that inhabit warm
shallow waters ensure that a large angular space can be sampled
in a very short time without having to move the receiver. This
may be ideal for rapid environment assessment applications
where a few key sea bed parameters can be measured by simply
deploying a small static hyrdrophone array.

CONCLUSIONS

In this paper, we reviewed some of the work on sensing in snap-
ping shrimp dominated noise environments. The key point is
that we can obtain significant gains by processing signals in
snapping shrimp noise by appropriate signal processing tech-

niques designed for impulsive noise. Near-optimal processing
techniques need not be computationally complex, and are often
very simple to implement. An information theoretic analysis
suggests that communication systems can gain very signifi-
cantly from appropriate design of FEC codes that take the im-
pulsive nature of the noise into consideration. We also reviewed
two applications where the snapping shrimp sounds are used to
our benefit, rather than being treated as noise. The first appli-
cation is that of ambient noise imaging, where passive targets
in water can be acoustically imaged without any artificial in-
sonification. The second application is that of rapid geoacoustic
inversion by using snapping shrimp as opportunistic sources.
Although the body of work on signal processing in snapping
shrimp noise, or using the noise to our advantage, is small, it
is compelling. We hope to see some of these ideas applied in
practical systems in time to come.
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