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A B S T R A C T

Poultry is one of the most strategic source of human foods. There have been seen some hopeful signs of bioa-
coustics application to monitor the health condition of this vital food source. One of the obstacles is that the
bird’s call is combined with some unvoiced sounds and extracting the calls is not easy, especially when the bird is
sick. This research is a report on successful application of some of the features involved in extracting healthy and
non-healthy birds’ calls from their sound signals. One hundred and twenty birds from two genotypes – Ross and
Cobb – were placed in two groups, a control and those challenged with respiratory diseases. They were reared
and their sound was recorded daily. The vocal phrases of the recorded audio signals were extracted using the
presented algorithm. Results of analysis showed that an increase in age and onset of illness are two factors that
cause an error increase. Detection accuracy was calculated at 95% for healthy young birds and 72% for non-
healthy birds. A significant part of this error is due to misclassing the calls as non-vocal segments. This meant
that 97% of the activities classified as vocal phrases were, in fact, vocal. These results showed that the idea of
such an easy-to-implement algorithm could potentially be employed for the coarselevel segmentation of some
animal vocalization signals with reliable outputs, which is an essential and primary step in bioacoustics research.

1. Introduction

Different techniques have been introduced to study domesticated
animals, but among them, sound-based precision livestock farming
(PLF) has significant advantages over other methods such as cameras or
accelerometers. Besides the fact that microphones are contactless and
relatively cheap, there is no need for a direct line of sight. Large groups
of animals can be monitored with a single sensor (Berckmans et al.,
2015). Bioacoustics is a branch of signal processing science that has
been developed to discover and decode the acoustic signals emitted
from biological systems to know more about their condition. Although
all of the signals emitted from natural systems can be placed in this
area, the majority of research in this field has been conducted on
human and animal audio signals. Studies on the human voice have
mostly been aimed at speech recognition, speech reconstruction and
audio-respiratory disease detection. In recent years, a number of valu-
able research studies have focused on animal biological signals such as
the ones mentioned below.

Using vocalization signals as a behavior-based welfare indicator to
monitor broiler activity is not uncommon (Peña Fernández et al., 2015).
For example, the coughing sound has been studied to identify re-
spiratory infection in pigs and dairy calves (Ferrari et al., 2008; Silva
et al., 2008), the pecking sound of birds was analyzed to study their
feeding behavior (Aydin et al., 2015). Similarly, it has been employed
in the vocal recognition of mother–offspring in cattle (de la Torre et al.,
2016), in bird population size estimation with the help of bioacoustics
(Bardeli et al., 2010), in the biological components of the soundscape,
in the way the sounds produced by animals interact with each other
(Hildebrand and Baumann-Pickering, 2013), in using sound analyzing
techniques for modeling the weight broilers (Fontana et al., 2017), and
in the identification of vocal patterns in young broilers (Fontana et al.,
2016). Exadaktylos et al. (2014) mentioned many interesting applica-
tions of animal sounds where a particular part of the signal is in-
vestigated. These studies show that valuable information can be gained
from the system under study with the help of biological voices. Among
the mentioned areas and animals, the present study, which is part of a
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more extensive research on poultry health monitoring, is focused on
obtaining information from the vocalization signal of broilers
(Mahdavian, 2017).

The first step in this process is recording the sound signal of the
target (the system that is under study) and of course, it should be noted
that an accurate and desirable signal (a signal without any noises or
sound activities that have a source other than the target) cannot be
expected at this step, since none of the animals, their calls, and their
environmental sounds are under our control. This issue can make it
more challenging to research animal vocalization rather than the
human voice; therefore, the extraction of bird calls from ambient noises
and non-vocal sounds is an integral part of research in this area.
Ventilation systems or electrical devices can cause ambient noise while
short-duration sound activities like the pecking of birds could be con-
sidered as non-vocal sounds.

Like most birds, poultry calls include the audio phrases issued by the
bird at different intervals. These audio phrases are interwoven between
the parts of the silence and signal segments, which are not useful such
as noise and non-vocal sound activities. Among these, the best way of
dealing with continuous harmonic sounds that have sources other than
the birds, such as ventilation noises, would be to design a proportionate
digital filter.

Designing such filters requires close inspection of the target signal
and is not in the scope of this article, although a band-pass filter that
covers the frequency range of chicken calls can be beneficial in this
regard. Such a filter was employed in this research (Fig. 1).

Although most of the ambient noises could be removed using a
band-pass filter, for extracting bird calls from silence and non-vocal
sounds, special attention is necessary. Admittedly, the performance of
the algorithm, which is developed to pick up birds' vocal frames, would
have a direct and undeniable effect on the performance of any other
sound processing system in this area. In other words, introducing a
reliable algorithm that can extract vocal sounds among other sound
activities in gathered signals, can be helpful in developing the animal
bioacoustics field. Such an algorithm is called voice activity detection
(VAD).

In different studies, different algorithms are introduced for the
course level segmentation of an acoustic signal (Bachu et al., 2008;
Rybach et al., 2009; Moattar et al., 2010; Bhandari et al., 2014). These
algorithms are designed based on their target signals and their appli-
cation. The algorithms have different computational complexity, but it
can be assumed that in most of them, acoustic features such as short-

time energy (STE), aero crossing rate (ZCR), signal to noise ratio (SNR),
among others, have had a leading role.

Regardless of the structure of an algorithm and features which are
used in that, this is very important to know the performance, strengths,
and weaknesses of a VAD algorithm accurately in its working area.
Manual checking can identify the real condition of sound activity.
Actually, the only simple idea or principle behind a VAD algorithm is
that the output of a robust VAD algorithm should not be different from
what a human recognizes. In other word, an algorithm should extract
vocal parts of a sound signal and should not misdiagnosis other parts as
vocal. As mentioned, employing vocal signals of domesticated animals
like poultry in their behavior analysis and health monitoring has at-
tracted more attention to itself these days. Therefore, algorithms which
are able to extract vocal segments from an audio signal could be helpful
in this field. The first step in this way is extracting vocal syllables from
the raw signal, and more important is to know how much we can trust
the algorithm when it introduces a signal segment as a vocal syllable, as
well as how many of the vocal syllables are incorrectly rejected by the
algorithm.

The present research tried to pave the way for further studies in this
field by introducing and evaluating an easy implementation of the VAD
algorithm. This algorithm extracted vocal syllables in sound signals
gathered from two groups of broilers, healthy and challenged with re-
spiratory disease. Acoustic features, peak prominence, short-time en-
ergy (STE) and wiener entropy (WE) were employed to detect target
segments. The performance of the algorithm was evaluated using dif-
ferent indexes, which are introduced in following:

2. Materials and methods

Tests were done with 120 birds made up of two genotypes of Ross
and Cobb broilers. The birds had been reared in a standard (commercial
poultry farming protocol) temperature, light, feed, and each of them
was numbered by individual tags in order to aid identification. The
birds were divided into two groups; control and those challenged with
bronchitis and Newcastle diseases. Infectious bronchitis and Newcastle
diseases are two of the most common respiratory diseases in the world.
The control group was vaccinated against common regional diseases,
but the two others had been challenged with 10× overdose vaccines for
a related disease on the 10th day. The groups were separately kept to
avoid contagion. To ensure the bird’s health condition, they were
monitored using a serological blood test three times during the
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Fig. 1. (a) Raw signal recorded at a poultry house with noise; (b) filtered signal ‘a’ at chickens’ vocal frequency range.
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program. The sound of each of the birds was recorded daily and in-
dividually. It should be mentioned that the disease causes physiological
symptoms and that it did not lead to the loss of any of the birds.

The profile of each bird (health condition, genotype, and gender)
was traceable using their tag number. Sound signals were recorded
separately every day of their growing period for the groups of birds
with the same profile. The same protocol was employed in the uni-
versities of Tarbiat Modares (Iran) and Minnesota (US) for the experi-
ments and data collection.

The main body of the algorithm employed in this paper is shown in
Fig. 2.

Te in the algorithm is the energy threshold that makes a boundary
between the silence and sound activity areas. Actually Te separates the
silent parts of the sound signal and leaves the rest for Tw and TP which
are the thresholds for the energy and peck prominence values, respec-
tively. The algorithm classifies a sound activity in one of two vocal and
non-vocal groups based on its WE and CPP values regarding the Tw and

TP thresholds.

2.1. Short-time energy

For a short-term speech signal, an n-th frame window is applied on
this signal:

= − − + ≤ ≤x m x m w n m n N m n( ) ( ) ( ) 1n

n=0, 1 T, 2 T, …, N is the window length, and T is the frame shift.
Short time energy of a signal can be determined from the following

expression:

∑= −
= − +

E x m w n m[ ( ) ( )]n
m n N

n

1

2

where w (n-m) is the window, n is the sample that the analysis window
is centered on, and N is the window length. The chosen window selects
the interim for processing and slides across the progression of squared

Fig. 2. Flowchart of the presented algorithm; Te, Tw, Tp are threshold values for STE, WE and peak prominence, respectively,which should be adjusted according to
the test condition and environmental noises.
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values. In the presented algorithm, low energy values would be clas-
sified as silence and higher values as sound activities.

2.2. Wiener entropy

Wiener entropy or spectral flatness value represents the shape of
peaks in a power spectrum and varies between 0 (for spectrum with
very sharp peaks) and 1 (for signals with very flat spectrum). A high
spectral flatness indicates that the spectrum has a similar amount of
power in all spectral bands; therefore, the spectrum envelope would
appear relatively flat and smooth.

The Wiener entropy is calculated by dividing the geometric mean of
the power spectrum by the arithmetic mean of the power spectrum, i.e.:

=
∑

=
−
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x n
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where x(n) is spectrum of the target signal.

2.3. Cepstral peak prominence (CPP)

The CPP measure is the difference in amplitude between the cepstral
peak and the corresponding value on the regression line that is directly
below the peak (i.e., the predicted magnitude for the frequency at the
cepstral peak). The CPP measure represents how far the cepstral peak
emerges from the cepstrum background. CPP was successfully em-
ployed as a robust and relevant acoustic measure of voice quality in
several studies specially when there are some perturbation in the signal
because of any problem in vocalization system such (Hartl et al., 2003;
Maryn et al., 2009; Kumar et al., 2010; Balasubramanium et al., 2011;
Watts and Awan, 2011). For more details on CPP calculations, we refer
the readers to Fraile and Godino-Llorente (2014).

With a close look at the flowchart, we can consider the algorithm as
a binary classification machine that is looking for silence and non-vocal
segments; therefore, parameters listed in Table 1 can be employed to
evaluate the performance of the algorithm.

In this table, the true condition is the real nature of the sound ac-
tivity which was confirmed after manual check labelling procedure;
therefore, TPs were unvoiced parts which were correctly identified by
the algorithm, FPs were vocal parts which were incorrectly identified as
unvoiced, FNs were unvoiced parts which were incorrectly identified as
vocal parts, and TNs were vocal parts which were correctly identified
by the algorithm.

Using these parameters, we defined the algorithm assessment in-
dicators as bellow:

=False posetive rate FPR FP
true

( )
Σ voiced calls

=True negative rate TNR TN( )
Σ true voiced calls

=False omission rate FOR FN( )
Σ voice identified

=Negative predictive value NPV TP( )
Σ voice identified

=Accuracy ACC
Algorithm true resuls

Total sound phrases
( )

3. Results and discussion

In order to investigate the effect of gender, genotype and health
condition of the chicken on the results, the variation of algorithm’s ACC
in different treatments was analyzed, and the results are presented in
Table 2. The experiment design was factorial based on a randomized
block (RBD). The treatment focus points were gender (two levels, fe-
male and male), genotype (two levels, Ross and Cobb) and health
condition (two levels, healthy and non-healthy).

According to Table 2, health condition is the only factor affecting
ACC in the study area of this project.

The Broilers’ vocal signal changed with the physiological changes in
the birds. Therefore for a more accurate assessment, the indicators were
studied in three periods of the bird life individually. These periods in-
cluded age 1–10, 11–20 and 21–42. Faster changes in the audio features
are the reason for a broader time resolution in the first half of the bird’s
growing period.

For evaluating the algorithm, 50 sound segments - each of them
with a 3-minute signal - contained several sound phrases that were used
as the experiment’s input signals, and the outputs were evaluated in a
human-made way.

Accuracy is the most general index in this assessment. This is the
summation of true acceptations and rejections divided into the number
of all of the evaluated phrases. As can be seen in Fig. 3, with the bird’s
age increasing as well as shifting the health condition from healthy to
sick, the accuracy decreased. The responsible error is oriented from two
sources. Error type I considers the bird’s call as an unvoiced sound, and
this is a false rejection. This error is the previously mentioned FPR,

Table 1
Parameters used as performance criteria of the algorithm.

Total sound phrases Algorithm’s result

Unvoiced Voiced

True condition Unvoiced sound True positive (TP) False negative (FN)
Correctly rejected Incorrectly accepted

Voiced call False positive (FP) True negative (TN)
Incorrectly rejected Correctly accepted

Table 2
Results of ANOVA indicating the effect of gender, genotype and health condi-
tion of chickens on classification accuracy (ACC).

Source Degree of
freedom

Type III sum of
squares

Mean square

Corrected model 7 2387a 341
Intercept 1 172,042 172,042
Gender 1 0.66 0.66ns

Genotype 1 150 150ns

Health condition 1 1908 1908**

Gender×Genotype 1 96 96ns

Gender×Health 1 8.1 8.1ns

Genotype×Health 1 20.1 20.1ns

Gender×Genotype×Health 1 204 204ns

Error 16 954 59
Total 24 175,384
Corrected total 23 3341

** : Significant on the 1% probability level; ns: none significant.

Fig. 3. Accuracy of the algorithm in extracting birds’ calls.
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which caused a decrease in the specificity of the algorithm, as shown in
Diagram 3. The error increasing trend in this diagram is compatible
with ACC, so almost 50% of the calls were considered as unvoiced and
incorrectly eliminated by the algorithm in the second half of the sick
bird’s age range. These statistics reflect the algorithm’s strictness in
terms of accepting a sound activity as a voice.

Based on the observations during the research, the bird’s voice ac-
tivity and the call phrase energy would decrease according to the in-
crease in age. Especially in the second half of the bird’s growing period,
we can hear many chopped calls with a short length and low energy
content. Most of them cannot pass through the first filter as it has a
short time energy threshold.

We can consider the variations in call frequency range due to both
the age increase and due to catching a respiratory disease to be the
second reason for the misclassification. Both age and sickness cause
more distortion in the bird calls, and this means that the call would be
more similar to the unvoiced sounds in terms of Wiener entropy. Some
of the calls pass the STE operator and do not pass through the entropy
comparator. Thus, they are considered as unvoiced sound incorrectly.

The second might be an accrued error (error type II), where it con-
siders unvoiced sounds as a call. This error can decrease the precision of
the system and its values during the growing period. This can be seen
for both healthy and non-healthy birds as in Fig. 5.

In the case of accruing error type I, we lost some of our samples,
which was bird calls, but in case of type II, the algorithm would feed the
wrong input data to the next chain link, which might be a health
monitoring system. Although this event is considered as a fault in the
system, but this error does not cause any severe problem and more
recording is enough to compensate. For error type II, due to the algo-
rithm’s final application, this error should be considered as the primary
error. The trend of this error is also very similar to error type I, and we
can explain it in the same way. Figs. 3–5 show that although with aging

and illness onset the algorithm would lose some of the true calls. This
classification strictness leads to a remaining FOR error of less than 3%
which means that even in an acute condition, more than 97% of the
voice activities selected by the algorithm were bird calls and this can be
a reliable result.

4. Conclusion

The health condition monitoring of poultry has always been con-
sidered an essential subject for several reasons such as the importance
of chicken as an important human food supply and the disease outbreak
rate. Therefore any tools introduced to the farmers and veterinarians to
help them in this field would be valuable. At the first step of developing
a bio-acoustical tool, bird calls should be separated from other unvoiced
sounds and silent parts. To achieve this, there are several applicable
sound features, some of which are more complicated than others re-
sulting in considerable computational load. This research was under-
taken to implement an algorithm with the help of short time energy and
wiener entropy features. Since the algorithm can be used in a health
monitoring system, performance evaluation of the system was im-
plemented by sampling both healthy and respiratory-disease challenged
birds calls. The results are satisfying, and the impurity of the output
signals does not exceed 3% even in the condition where bird calls were
distorted due to sickness and age. Nevertheless, losing 49% of the calls
in the mentioned condition was the cost of increasing signal purity.
Hence, more research activity to improve the algorithm and to decrease
this error would be valuable. Furthermore, as mentioned in the in-
troduction section, another step to make the research more complete
and operational is to design an appropriate filter to make such an al-
gorithm more robust against different types of environmental noise.
This would be feasible through an accurate understanding of the sound
features of chicken calls.
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