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Divergence of the acoustic signals used in mate calling may be an important driver of speciation. Male song may 
vary accordingly to, in mismatch with or independently of female preferences. Therefore, to estimate the importance 
of male signal variation between subspecies, female preferences against subspecies-specific signal variants must be 
tested. We examined the female response probability in the two subspecies of the bush-cricket Isophya kraussii for 
consubspecific and heterosubspecific male signals, and also for the song of a closely related species (I. camptoxypha), 
which is sympatric with one, but allopatric to the other subspecies. Performing no-choice playback experiments, we 
found that females of both subspecies responded to the male song of their own subspecies with significantly higher 
probability than to heterosubspecific and heterospecific songs. Response specificity for consubspecific vs. heterosub-
specific signals was not significantly asymmetric comparing the two subspecies. A significant difference was found, 
however, in the discrimination of heterospecific calls: females showed stronger discrimination against the song of 
I. camptoxypha in the subspecies sympatric with that species. Our results are best explained by a tightly covarying, 
stepwise coevolution of male signals and female preferences.
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INTRODUCTION

Interpopulation divergence in sexual acoustic com-
munication can be a crucial element of speciation 
(Wilkins, Seddon & Safran, 2013). It may be either 
an initial step when sexual acoustic communication 
evolves along different trajectories in allopatric pop-
ulations due to sexual selection (e.g. Grace & Shaw, 
2011; de Oliveira Gordinho et al., 2015), ecological 
constraints (Zuk, Simmons & Cupp, 1993; Ballentine, 
2006; Cocroft, Rodriguez & Hunt, 2010), genetic drift 
or mutation (Campbell et al., 2010; Goodman et al., 
2015) and cultural evolution (Lachlan & Servedio, 
2004; Linossier et al., 2016) or it may arise during the 
secondary contact of previously isolated populations 
diverged in traits unrelated to sexual communication 

during allopatry. In those cases, divergence in sexual 
acoustic communication may take part in the reinforce-
ment of the genetic isolation between them (Gerhardt, 
2013). The resulting interpopulation divergence of 
male signals is often the first detected sign of the pro-
cess of divergence. Thus, the examination of acoustic 
signals in morphologically similar populations led to 
the discovery of ‘cryptic’ species in several taxa of ani-
mals (Henry, 1994; Jones, 1997; Ng et al., 2016; Heller 
et al., 2017). However, to estimate the significance of 
signal divergence regarding reproductive isolation 
and to get closer to the understanding of the evolu-
tionary process causing the divergence, we also need 
to examine the receiver side of the communication 
system: female preferences against male signal vari-
ants. If females prefer the male song variant of their 
own population, then it is reasonable to presume that 
female preferences are the dominant drivers of male 
signal divergence (Gray & Cade, 2000; Grace & Shaw, *Corresponding author. E-mail: orci.kirill.mark@nhmus.hu 
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2011; Barbosa, Rebar & Greenfield, 2016) and the dif-
ferences in acoustic communication are expected to 
be the significant components of prezygotic isolation 
between the populations. However, if females do not 
show definite preference for the male signal variants of 
their own population, then strongly directional sexual 
selection, sensory exploitation (Ryan & Rand, 1993) or 
processes other than intersexual selection are likely 
to have significant roles in the male signal divergence 
(Simmons, Zuk & Rotenberry, 2001; Velásquez et al., 
2015). In those cases, the divergence in acoustic com-
munication would not bar interpopulation crossings in 
case of their secondary contact.

Acoustic signalling is a characteristic behaviour of 
many species in the insect order Orthoptera (Robinson 
& Hall, 2002). Males emit their acoustic signals spon-
taneously to attract distant females or to stimulate 
their acoustic response. The majority of studies in 
which female preferences for male song patterns were 
experimentally investigated found definite prefer-
ences for conspecific male signals (e.g. Perdeck, 1958; 
Stumpner & von Helversen, 1994; Guerra & Morris, 
2002). However, in some species, the behavioural 
response of females against different male song vari-
ants has proved to be non-discriminative (Heller, von 
Helversen & Sergejeva, 1997; Bush & Schul, 2010). 
Thus, the high level of interspecies acoustic diversity 
is paired with a hidden variation in female response 
specificity (Schul, von Helversen & Weber, 1998; 
Kowalski & Lakes-Harlan, 2011). Female response 
specificity may be even more variable during specia-
tion. In this study, we examined female preferences 
for subspecies-specific male songs and heterospecific 
calling songs in the two subspecies of the bush-cricket 
Isophya kraussii Brunner von Wattenwyl.

Isophya is the second most species-rich genus within 
the subfamily Phaneropterinae in Europe (Heller 
et al., 1998). Most species in the genus show subtle 
morphological differences, but differ conspicuously in 
their male calling songs (Heller et al., 2004; Chobanov 
et al., 2013; Zhantiev, Korsunovskaya & Benediktov, 
2017), suggesting that acoustic diversification is a 
dominant component of the evolution of species rich-
ness in this genus. In spite of the conspicuous acoustic 
diversity of Isophya, experimental studies testing the 
effectiveness of male song differences as premating 
barriers in the genus are rare (Zhantiev & Dubrovin, 
1977; Zhantiev & Korsunovskaya, 1990; Orci, 2007). 
As it is usual in the subfamily of Phaneropterinae, 
Isophya males and females perform an acoustic duet 
during their mate-finding behaviour: females emit 
short acoustic signals (a single click or group of a few 
impulses) in response to the male calling songs (Heller, 
1990). The impulse repetition pattern of those short 
response signals is variable, but females emit their 
response during a species-specific time window in 

relation to the male signal. Among the European spe-
cies of the genus, I. kraussii has the largest distribu-
tion range (Heller et al., 2004; Cigliano et al., 2017), 
and recently, Iorgu & Heller (2013) described a new 
subspecies, I. kraussii moldavica, near the eastern 
border of the area of the nominotypic subspecies. The 
two taxa differ mainly in the rhythmic features of the 
male calling songs: I. kraussii moldavica males pro-
duce significantly shorter syllables (see Material and 
Methods for the bioacoustic terminology applied in 
this study) containing a smaller number of impulses 
in comparison to the male song of the nominotypic 
subspecies (Iorgu & Heller, 2013). In addition to that 
difference, the male calling songs are very similar in 
oscillographic structure in the two subspecies: calling 
males produce long sequences of evenly repeated syl-
lables (Fig. 1A, C), where each syllable is composed of a 
main impulse series and a few after clicks (Fig. 1B, D). 
Male songs of the two subspecies have similar, wide-
band power spectra containing dominant frequency 
components between 20 and 40 kHz (Iorgu & Heller, 
2013). The main aim of our study was to examine how 
much the attractiveness of subspecies-specific male 
calling songs differs for females in both subspecies. 
The examination of that question may help us to esti-
mate whether the divergence of acoustic communica-
tion could cause a non-random mating pattern in case 
of a secondary contact of the two taxa. Furthermore, 
our results provide some important pieces of informa-
tion about the signaller–receiver coevolution in this 
insect. Another question examined in this study was 
whether females in the two subspecies of I. kraussii 
discriminate against the heterospecific calls of Isophya 
camptoxypha (Fieber), a species sympatric with one 
subspecies, but allopatric with the other (Kenyeres 
& Bauer, 2005; Bauer & Kenyeres, 2006; Iorgu & 
Heller, 2013). The male calling song in that species is 
composed of the same oscillographic elements as in 
I. kraussii (Fig. 1E, F) and has a similar, wide-band fre-
quency spectrum (15–45 kHz), but differs in syllable 
duration, syllable repetition rate and in the number 
of impulses per syllable (Orci, 2007). The attractive-
ness of that heterospecific signal was examined to test 
acoustic heterospecific discrimination in I. kraussii 
and to see whether the two subspecies differ in that.

MATERIAL AND METHODS

Study animalS

In both subspecies of I. kraussii, females were collected 
as large nymphs from their natural habitats. Isophya 
k. kraussii females originated from meadows and for-
est clearings in the Pilis Mountains (Hungary), and 
I. k. moldavica females were collected in the hillside 
meadows of Suceava county (Romania). All of them 
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were reared to adults without any contact with males, 
nor could they hear any male signal. That way we 
tested virgin females with high motivation level con-
cerning mate finding. Playback tests were done suc-
cessfully with 16 females in I. k. kraussii and with 16 
females in I. k. moldavica. During the whole period of 
the study, females were fed with dicotyledonous plants 
ad libitum.

BioacouStic terminology

The bioacoustic terminology used in this study follows 
Ragge & Reynolds (1998) with some additional terms 
that we found useful when describing the acoustic 
signals of phaneropterine bush-crickets (Heller et al., 
2004).

Calling song: spontaneous song produced by an iso-
lated male or the song produced by a male singing 
a duet with a female. Generally, this term is used in 
the literature only for the spontaneous song of an 
isolated male, but in the Isophya species examined 
in this paper, males use the same song type when 
calling alone and when duetting with a female.

Syllable: the song produced by one opening–closing 
movement cycle of the tegmina.

Syllable repetition period (SRP): one syllable and the 
following silent intersyllable interval.

Duration of syllable (DS): the time elapsed from the 
first to the last impulse of the main impulse series 
of a syllable.

Impulse: a simple, undivided, transient train of sound 
waves (here: the highly damped sound impulse 
arising as the impact of one tooth of the stridula-
tory file).

Click: an isolated, distinct impulse.

PlayBack Stimuli

Playback stimuli were made from original male call-
ing song recordings. Male song recordings originated 
from the same population from which females were 
collected in the two subspecies of I. kraussii. Song sam-
ples of I. camptoxypha males were recorded from pop-
ulations living in the Bieszczady Mountains (Poland) 
and in the Mecsek Mountains (Hungary). Male song 
stimuli (96 kHz sample rate, 16 bit) were modified 
with minimal acoustic processing: all recordings 
were high pass filtered (cut-off frequency: 3 kHz) and 
normalized to 90% of the available 16-bit amplitude 
range. Sound recordings from five males in both sub-
species of I. kraussii and in I. camptoxypha were cho-
sen (altogether, samples of 15 males were included). 
Each stimulus contained a series of 30 syllables from a 
single male. Those 15 playback stimuli were arranged 

Figure 1. Oscillograms showing the rhythmic patterns of male calling songs in the two subspecies of Isophya kraussii 
(A–D) and in I. camptoxypha (E, F) at two time scale resolutions. A, C, E, series of syllables; B, D, F, single syllables. 
Oscillograms on the right are time axis magnified portions (as indicated by dashed line rectangles) of the left ones. Time 
scale bars at the bottom are for all oscillograms in the given column of oscillograms.
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in three stimulus series with a randomized stimulus 
order. In each stimulus series, every stimulus was pre-
sent in one copy and stimuli were separated from each 
other by a silent interval of 45 s.

PlayBack Protocol

Each female was tested separately. Stimulus series 
composed of original male song samples were played 
back to the tested female and her acoustic response 
songs were recorded together with the playback stim-
uli. To measure the attractiveness of the tested male 
song samples, the number of syllables answered vs. 
not answered by the tested female was counted by 
examining the sound recording of the playback trial 
(Fig. 2). We applied a no-choice (single-stimulus) play-
back design. In comparison to two-choice playback, 
this design gives less-sensitive results regarding 
the difference of attractiveness of the tested stimuli 
(Tauber et al., 2001), but provides a more rigorous 
test of the ability of females to choose a consubspe-
cific/conspecific reproductive partner on the basis of 
its acoustic signal (Gerhardt & Huber, 2002). Each 
examined female was placed in a cylinder-shaped 
mesh cage (diameter 8 cm, height 12 cm). The cage 
was enclosed in an acoustic isolator box made of 
18-mm-thick sheets of laminated wood. The interior 
of the box was lined with a 5-cm-thick acoustic foam. 
The box contained a speaker (Alpine SPS-130A) emit-
ting the playback stimuli and a microphone (Brüel & 
Kjaer, type: 4191) for recording the acoustic response 
of the female. The microphone was placed between 
the speaker and the cage. Both the microphone and 
speaker were directed towards the cage of the tested 
female from a distance of 5 and 20 cm, respectively 
(Supporting Information, Fig. S1). Playback stimuli 
were broadcasted to the experimental animal from 
a Zoom H4n digital recorder through a Mac Audio 

(MPX 2000) amplifier driving the speaker [Alpine 
SPS-130A, frequency response flat (±3 dB) between 
150 and 30 000 Hz] within the isolator box. The 
amplitude of playback stimuli was 69 (±2) dB SPL 
at the centre of the cage of the experimental animal, 
based on the root mean square amplitude of the main 
impulse series of the syllables. The acoustic response 
of the tested female was recorded using the soft-
ware Avisoft Recorder 4.2.15 (Avisoft Bioacoustics, 
Germany) running on a computer connected to a 
National Instruments data acquisition card (NI USB 
6122), which received its input from a 1/2-inch Brüel 
& Kjaer microphone (type: 4191) through a signal con-
ditioning amplifier (Brüel & Kjaer, Nexus). All three 
stimulus series were presented to each tested female 
in a random order so that we could examine whether 
or not a female response was elicited in the case of 
30*15*3 syllables (1350 observations per female) con-
tained by the three stimulus series. We succeeded in 
performing the playback experiment with 16 females 
in I. k. kraussii and 16 females in I. k. moldavica. The 
software Adobe Audition 1.5 (San Jose, CA, USA) was 
used to count the number of female responses elicited 
by the playback stimuli. Oscillograms presented in 
this paper were produced using the R-package ‘see-
wave’ (Sueur, Aubin & Simonis, 2008).

StatiStical analySiS

Our main question was whether male song type (con-
subspecific, heterosubspecific, heterospecific) has an 
effect on female response probability in the two sub-
species of I. kraussii. To examine that question, a 
mixed-effect logistic regression model was calculated 
using the lme4 package (Bates et al., 2015) running 
in the R statistical environment (R Core Team, 2014). 
A logistic regression model describes the behaviour 
of a categorical, dependent variable in response to 

Figure 2. Two-traced oscillograms of male–female pair-forming duets: A, Isophya kraussii kraussii; B, I. kraussii mol-
davica (in order to make the duet structure easier to observe, male song was removed from the female tracks).
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one or more explanatory (independent) variables. In 
its basic version, the examined dependent variable is 
binary and can be given as a series of values 0 and 1 
or the proportion of those two outcomes (Hilbe, 2009). 
The dependent variable of our model was the ratio of 
answered vs. not answered syllables in the playback 
stimuli. Our observations (whether a female response 
song occurred) were not independent of each other 
because of the repeated observations of females, the 
repeated presentation of the same playback stimuli 
and the repeated use of the same three randomized 
stimulus series. Therefore, a mixed-effect model was 
calculated where random factors can account for the 
grouped pattern of observations (Faraway, 2016). 
The calculated mixed-effect logistic regression model 
included two fixed-effect variables and their interac-
tion: (1) subspecies identity of female and (2) male 
song type as a factor with three levels such as con-
subspecific, heterosubspecific and heterospecific. 
Furthermore, the following random factors were 
included in the model: specimen identity of the tested 
females, specimen identity of the males from which the 
playback stimuli were recorded and the identity of the 
stimulus series.

RESULTS

A mixed-effect logistic regression model calculated 
on the basis of our playback results (Supporting 
Information, Table S1) showed that females of both 
subspecies responded to the male song of their own 
subspecies with significantly higher probability than 
to heterosubspecific and heterospecific male songs 
(Table 1; Fig. 3). Response proportion (syllables 
responded/all presented syllables) for consubspecific 
songs was similar in the two subspecies (Fig. 3), and 

the female’s subspecies identity had no significant 
effect on the probability of response to own-subspecies 
male song (Table 1). No significant interaction between 
female subspecific identity and the effect of hetero-
subspecific male song on response probability was 
detected (Table 1). In contrast, interaction between 
female’s subspecies identity and the effect of hetero-
subspecific male song on response probability was sig-
nificant: I. k. kraussii females discriminated against 
heterospecific (I. camptoxypha) songs more strongly 
than I. k. moldavica females did.

DISCUSSION

Females in both subspecies of I. kraussii responded 
with significantly higher probability to consubspecific 
male calling songs than to heterosubspecific signals. 
However, with lower probability, heterosubspecific 
male songs were also effective in eliciting female 
response (Fig. 3; Table 1). These findings suggest that 
the divergence of male–female acoustic communica-
tion would cause an assortative mating pattern in the 
case of secondary contact of the two taxa, but acoustic 
divergence alone could not maintain a complete repro-
ductive isolation between them. Therefore, our results 
are in accordance with the present subspecific treat-
ment of the two taxa.

Sometimes, male signals vary significantly between 
populations, but their conspicuous differences are not 
important to females. For example, in the case of the 
frog Pleurodema thaul, a remarkably high, interpopu-
lation call divergence was detected (Velásquez et al., 
2013). That divergence seems to be unimportant for 
females and is likely to be the outcome of inter-male 
competition (Velásquez et al., 2015). New features 
of male signals may evolve whether or not those are 

Table 1. Fixed-effect estimates of a mixed-effect logistic regression model testing the effect of male song taxonomic iden-
tity on the probability of acoustic response in females of the two subspecies of Isophya kraussii

Fixed effect Estimate SE z P

Intercept 0.217 0.295 0.733 0.464
Male song is heterosubspecific (reference level: male song is 

consubspecific)
−2.118 0.274 −7.741 <0.0001

Male song is heterospecific (ref. consubspecific male song) −4.576 0.286 −16.027 <0.0001
Female’s subspecies identity: I. kraussii moldavica (ref. I. kraussii kraussii) 0.075 0.417 0.18 0.857
Interaction: male song heterosubspecific * female’s subspecies identity is 

I. k. moldavica
0.241 0.543 0.443 0.657

Interaction: male song heterospecific * female’s subspecies identity 
is I. k. moldavica

3.456 0.288 12.001 <0.0001

Model estimates are given in logits. Model formula: probability of female acoustic response ~ male song type * female subspecific identity + (1|female_
id) + (1|male song sample_id) + (1|male song sample series_id). Nobservations = 1440, Nfemales = 32, Nmale song samples = 15, Nmale song sample series = 3; male song type 
is a factor with three levels: consubspecific, heterosubspecific and heterospecific; one observation means a data pair: the number of answered vs. not 
answered syllables in case of a stimulus containing 30 syllables.
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important to their females, as in the bush-crickets 
Neoconocephalus retusus and N. maxillosus, where 
females show no preferences for the derived, double-
pulsed calls of the conspecific males (Bush & Schul, 
2010). Another possibility is that the variation in male 
signals significantly affects their attractiveness, but 
female preferences mismatch male signal variation. 
For example, in the frog species group Physalaemus 
pustulosus, females show preferences for signal traits 
not produced by their males, but those are present in 
some of the closely related species in the group, suggest-
ing that the evolution of male signals is driven by pre-
existing female sensory biases (Ryan & Rand, 1993). 
Our study shows the most frequently reported pattern, 
where variation in male signals matches the variation 
of female preferences when closely related taxa are 
compared (e.g. Henry, 1985; Barth & Schmitt, 1991; 
Rodríguez, Ramaswamy & Cocroft, 2006; Boumans & 
Johnsen, 2014). Our results provide only a snapshot 
of the evolution of male–female acoustic communica-
tion in the two subspecies of I. kraussii, and therefore, 
we cannot make well-supported inferences about the 
evolutionary history of signaller–receiver divergence 
in this taxon pair; nevertheless, the supported con-
cordance between female preferences and male signal 
pattern is most likely to result from tight, gradual 
coevolution of male song and female preferences.

Reproductive isolation between closely related 
allopatric or parapatric populations is often asymmet-
ric, which may help us to make inferences about the 
sequence of ancestry (Kaneshiro, 1980), the progress 

of the speciation process (Arnold, Verrell & Tilley, 
1996) and gene flow during hybridization (Hochkirch 
& Lemke, 2011). Our results suggest that reproductive 
isolation associated with acoustic communication is 
not strongly asymmetric in the case of this pair of sub-
species (Tab. 1; Fig. 3). A quantitative genetic model 
(Arnold et al., 1996) predicts that high levels of asym-
metry in reproductive isolation are most likely to occur 
during the intermediate phase of speciation, suggest-
ing that the two subspecies examined here are at an 
initial or at a highly progressed phase of speciation. 
Morphology of the stridulatory files suggests that the 
latter may be the case, since the stridulatory files show 
clear differences in the two subspecies (Iorgu & Heller, 
2013), indicating that behavioural divergence [which 
often appears to be faster than morphological differen-
tiation (Henry, 1994; Jones, 1997)] is accompanied by 
the divergence of stridulatory organs.

Location-specific interaction with sympatric species 
is a potential driving force of speciation. Concerning 
the evolution of mate recognition, the presence or 
absence of closely related species is of special impor-
tance (Hamao, 2016). We found that females of the two 
subspecies of I. kraussii showed significantly different 
levels of discrimination against the song of I. camptoxy-
pha, a closely related species (Fig. 3). Isophya camp-
toxypha is sympatric with I. k. kraussii, but allopatric 
with I. k. moldavica. As expected, I. k. kraussii females 
discriminated more strongly against the male song of 
I. camptoxypha than females of I. k. moldavica did. 
A possible explanation for this is that females are not 

Figure 3. Variation of female response ratio measured during single-stimulus playback experiments in the females of the 
two subspecies of Isophya kraussii in response to consubspecific, heterosubspecific and heterospecific (I. camptoxypha) male 
song samples. Statistical significance of differences (NS, not significant, ***P < 0.001) is indicated based on the results of 
a mixed-effect logistic regression model calculated on the basis of the playback results (Table 1). The figure is based on the 
playback trials of 32 females (16 females in each subspecies).
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exposed to a selection pressure favouring discrimina-
tion against a signal type of an allopatric relative, since 
they have no chance to meet and hybridize. Similarly, 
weaker discrimination against allopatric relatives 
than against sympatric ones has been reported in a 
wide range of animals (Barth & Schmitt, 1991; Honda-
Sumi, 2005; Braune, Schmidt & Zimmermann, 2008; 
Bewick & Dyer, 2014). Another possible explanation, 
not excluding the previous one, for the weak discrimi-
nation of I. k. moldavica females against I. camptoxy-
pha song is that the male signals of the two taxa are 
similar to each other (see the oscillograms in Fig. 1). 
The male songs of I. k. kraussii and I. camptoxypha dif-
fer conspicuously in the DS, and I. k. moldavica is inter-
mediate regarding this signal parameter. Therefore, 
even with the same accuracy of signal recognition, 
I. k. moldavica females may be more responsive to 
I. camptoxypha songs than I. k. kraussii females are.

Our study is one step towards a better understand-
ing of the evolution and behaviour of these insects. 
A number of interesting questions arise and await for 
further examination. Which signal traits are impor-
tant and which ones are unimportant regarding mate 
recognition or sexual selection in the two subspecies? 
The chemical communication channel may also be 
involved in mate recognition, as in other orthopterans 
(e.g. Ritchie, 1990; Tyler et al., 2015; Finck & Ronacher, 
2017); furthermore, postzygotic isolation may develop 
simultaneously with prezygotic isolation in allopatric 
closely related taxa (Gray et al., 2016). Geographic 
patterns in acoustic signalling and molecular genetic 
divergence (Pecsenye, Vadkerti & Varga, 2003) could 
provide us information needed to answer further inter-
esting questions regarding the evolution of these sub-
species. For example, is the larger male song difference 
between I. k. kraussii and I. camptoxypha a result of 
character displacement? We hope that our study draws 
attention to this species, which may be a suitable sub-
ject for further research on speciation, sexual selection 
and the relationship between those two processes.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Figure S1. A schematic drawing showing the configuration of playback devices within the isolator box from 
above. S, speaker; M, microphone; A, cage of the tested bush-cricket female; arrows show the direction of speaker 
and microphone.
Table S1. The results of playback experiments examining the response rate of females to consubspecific, hetero-
subspecific and heterospecific male songs in the two subspecies of Isophya kraussii.
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